Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling NOx Adsorption on NaZSM-5 Film with FEMLAB

Indra Perdana, Derek Creaser

Chalmers University of Technology

A model describing transport of NOx into a NaZSM-5 film and kinetics for reactions forming nitrates species was developed using FEMLAB. The film consists of a thin layer of intergrown NaZSM-5 crystals supported on a cordierite monolith support. Model predictions of outlet gas concentration were fitted to experimental data using a nonlinear regression function in MATLAB. Parameter fitting was ...

Defining the stress fields for the safety design of the LBT adaptive secondary mirror - FEMLAB/MATLAB set of functions to define and compute shell overstressing

Del Vecchio C., Busoni L., Riccardi, A.
INAF-OAA

This paper presents the most important safety issues of the thin glass shell of the LBT Adaptive Secondary Mirror. Two overstressing conditions are investigated: the condition in which the mirror shell is passively supported and the condition of a failure of the control system governing the actuator forces. The two stress analyses determine the portion of the mirror which may exceed a certain ...

Modeling dynamic of composite plate with PZT patches embedded by using FEMLAB3.1

Wang, J.
Mads Clausen Institute, University of Southern Denmark

As an important part of the smart/intelligent structures, the composite plate with piezoelectric-ceramics (PZT) patches embedded has numerous values in many engineering applications, such as: aerospace, automotive, civil and mechanical engineering. A composite thin plate excited by PZT actuators is considered in this work. To describe the dynamic response of the quadrate plate clamped at its ...

Grain Boundary Migration Model in Copper Interconnects

Tim Cale, Daniel Bentz, and Max Bloomfield, RPI

We discuss the use of 3D grain continuum modeling to study grain boundary migration driven by differences in strain energy density. COMSOL Multiphysics is used to compute stresses and strain energy densities in polycrystalline structures caused by temperature changes. We treat each grain as a single crystal, with the anisotropic elastic properties of single crystal Cu appropriately rotated to ...

Designing Polymer Thick Film Intracranial Electrodes for use in Intra-Operative MRI Setting.

G. Bonmassar[1], and A. Golby[2]
[1]AA. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
[2]Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA

A new type of MRI compatible intracranial electrode based on Polymer Thick Film (PTF) is presented and studied using COMSOL Multiphysics. The geometry considered was a two-dimensional cross section cut of 5 mm thick electrodes with 5 cm leads on top of a 2×10 cm slab representing Gelfilm, or the substrate. The resistive leads were compared with metallic leads to estimate the ...

A Numerical Study for Rubber Particles Collection Involved in New Thermoforming Composite Process Using COMSOL Multiphysics®

R. Carbone[1], V. Antonelli[2][3], A. Langella[1], and R. Marissen[3]

[1]Material and Production Engineering Department, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Institute of Lightweight Structures, Technische Universität München, München, Germany
[3]Design and Production of Composite Structure, Delft University of Technology, Delft, The Netherlands

This paper deal of the forming process applied to the thermoplastic composites. A new thermoforming process that uses rubber particles collection as flexible mould was presented and numerically modeled. A characterization of the rubber in particles form was previously performed to value the material parameters in the user-defined hyperelastic constitutive laws employed in the FEM (Finite Element ...

Energy Transformation Damping

G.S. Mulder[1]
[1]Leiden, The Netherlands

A model for material damping is presented in terms of internal friction and in terms of a variation of stiffness. In the latter case the idea is that the stiffness increases if elastic energy is stored and decreases if elastic energy is released. In case of a single mass spring system “stiffness” refers to the stiffness of the spring; in case of a continues object ...

Variation of the Frost Boundary below Road and Railway Embankments in Permafrost Regions in Response to Solar Irradiation and Winds 

N.I. Kömle[1] and W. Feng[2]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, China

We present COMSOL solutions for a coupled gas flow and heat transfer problem, which occurs particularly when traffic pathways are constructed in high altitude and arctic regions, where the underground is frozen soil. To avoid melting of the frozen ground (which usually leads to mechanical instability) one has to find suitable measures to keep the subsurface soil and the embankment suitably cool. ...

A Study of Curved Flexures for MEMS

Minhee Jun[1], and Jason V. Clark[1]
[1]Departments of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

Large deflection actuators are becoming increasingly important for microsystems. Since actuation forces are usually small, large deflection actuators usually require flexures with low stiffness. Rectangular serpentine flexures are often used for such actuators due to their low stiffness and large linear deflection range. In this paper we investigate the performance of curved serpentine flexures ...

Finite-element Validation of Electric Field Distribution inside a Cylindrical Conductor for an Ideal Two-Probe Impedance Measurement

V.S. Kumar, G. Kelekanjeri, and R.A. Gerhardt
Georgia Institute of Technology

A COMSOL Multiphysics model is used to validate recently derived closed-form analytical expressions for the electric field inside a cylindrical conductor for the case of a two-probe impedance measurement. A two-probe impedance measurement consists of applying an AC signal across a specimen placed in between the source and sink electrodes. Analytical solutions for the axial and the radial ...

Quick Search

2691 - 2700 of 3645 First | < Previous | Next > | Last