Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Ultrafast Effects in 3D Metamaterials

N. Katte [1], P. Evans [2],
[1] Wilberforce University, Wilberforce, OH, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

The extraordinary electromagnetic response of nanostructured material, usually made up of a metallic structures distributed in within a dielectric matrix has attracted a lot of interest in recent years. These materials are technically called metamaterial (MM) since they possess different properties from their constituent materials. Several applications of metamaterials have already been ...

Numerical Analysis on Plasmonic Nano-Cucumber Achieving Large EFs and Wide Tuneability of the Peak

A. Zare [1], E. Cutler [1], H. Cho [1],
[1] Center for Biomedical Engineering & Science, University of North Carolina - Charlotte, Charlotte, NC, USA

INTRODUCTION: Researchers in the biomedical field have recently become interested in the potential applications of plasomics. Surface plasmon resonance based on optical properties of metallic nanostructures can be used for detection of special biological targets. Gold nanostructures with different shapes and sizes have been designed to achieve high enhancement factor (EF), wide range of ...

Coupling Picosecond Terahertz Pulses to a Scanning Tunneling Microscope

P. H. Nguyen [1], C. Rathje [2], G. J. Hornig [1], V. Jelic [1], C. Ropers [2], F. A. Hegmann [1],
[1] University of Alberta, Edmonton, AB, Canada
[2] 4th Physical Institute, University of Göttingen, Göttingen, Germany

Probing ultrafast processes over subpicosecond and picosecond time scales provides fundamental insight into the nature of materials. We have experimentally demonstrated terahertz (THz)-pulse-induced tunneling in a scanning tunneling microscope (THz-STM) to image surfaces with simultaneous nanometer spatial resolution and subpicosecond time resolution [1]. However, the exact mechanism by which ...

Implicit Large Eddy Simulations of 2D Flow and Heat Transfer in Thermoacoustic Resonators

N. Martaj [1,2], S. Savarese [3], S. Kouidri [3], M. M. ALI [4,5]
[1] EPF Ecole d’ingénieurs, Montpellier, France
[2] Institut d'Electronique et des Systèmes, Université de Montpellier, Montpellier, France
[3] Armélio, Les Ulis, Courtabœuf, France
[4] LIMSI-CNRS, Orsay, France
[5] UPMC Univ Paris 06, Paris, France

The reduction of energy consumption in the building sector (nearly 40% of the energy consumption in Europe) is a real challenge to achieve the objective of the “2020 European climate and energy package”. In recent years, great interest is observed for the Stirling thermoacoustic machines. Nonlinearities due to the high level of acoustic pressure generate DC flows that are superimposed on the ...

The Bio Inspired Tactile Sensor

N. Sabri [1]
[1] Universiti Malaysia Perlis, Malaysia

In recent years, studies on robotics have been needed, to utilise the tactile sensors for artificial skin. Researchers have been working on tactile transduction technologies which lead to many sensor prototypes and devices for robotic applications in their effort to solve the tactile sensing problems in robotics and medical industries, but they remain unsatisfactory. This project addresses the ...

Model of a Pulsed Radiofrequency Technique for Pain Relief

E. Ewertowska [1], M. Trujillo [2], E. Berjano [1],
[1] Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
[2] Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain

Radiofrequency ablation is one of the common methods used to treat pain, movement or mood disorders. It bases on the electromagnetic energy provided to the selected tissue when an alternating current is applied. The resistive heating produced in this process provokes temperature rise in target tissue and generates lesion for intended therapeutic effects. However, in case when no tissue damage is ...


唐旻 [1], 冯强强 [1], 董一琳 [1]
[1] 上海交通大学,上海,中国

近年来,三维系统级封装技术逐渐成为人们的关注焦点,是下一代集成电路封装设计最有发展潜力的实现方案。然而,热管理是系统级封装技术需解决的关键问题。图1是典型的系统级封装结构,包含堆叠芯片、硅通孔、封装基板、热界面材料以及多层凸点结构。若对该结构的所有细节进行建模,将会消耗巨大的计算资源,导致分析效率非常低下。因此,本论文将封装中的硅通孔层以及凸点层等复杂结构进行等效处理,提取它们在水平和垂直方向上的等效热导率以及等效比热容、等效密度等参数。例如,在建模过程中,采用 COMSOL Multiphysics® 传热模块对硅通孔层的水平方向等效热导率进行提取,边界设置如图2所示,通过仿真得到的热源端温度来推导等效热导率。类似地,垂直方向的等效热导率提取如图3所示。经过上述处理,可将封装中的硅通孔层以及凸点层等复杂结构等效为介质均匀的材料,然后再采用 COMSOL 进行整体封装结构的热仿真 ...

Electron Trajectories in Scanning Field-Emission Microscopy

H. Cabrera [1],
[1] Swiss Federal Institute of Technology, Zurich, Switzerland

The Scanning Field Emission Microscopy (SFEM) is a novel technology similar to the better known Scanning Tunneling Microscopy (STM). In STM, electrons are exchanged between the outermost atom of a sharp tip and the outermost atom of a target over sub-nanometer distances by means of the quantum mechanical tunnel effect. When the tip is scanned parallel to the surface, the tunneling current can be ...

Space-time Formulation for Finite-Element Modeling of Superconductors

F. Grilli[1], F. Sirois[1], M. Laforest[1], and S. Ashworth[2]

[1]Ecole Polytechnique de Montréal, Montréal, QC, Canada
[2]Los Alamos National Laboratory, Los Alamos, NM, USA

In this paper we present a new model for computing the current density and field distributions in superconductors by means of a periodic space-time formulation for finite elements (FE). By considering a space dimension as time, we can use a static model to solve a time dependent problem. This allows overcoming one of the major problems of FE modeling of superconductors: the length of ...

A Mean Field Approach to Many-particles Effects in Dielectrophoresis

O. Nicotra, and A. La Magna
CNR-IMM Sezione di Catania, Catania, Italy

One of the major applications for dielectrophoresis is the selective trapping and fractionation in lab-on-a-chip devices. Nevertheless, many-particle effects due to high concentrations of biological material around electrodes can cause a rapid decrease of trapping efficiency in dielectrophoretic devices. In this contribution we present a new approach based on a drift-diffusion dynamics to study ...