Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation and Experimental Validation of Direct Heating of Dhruva Fuel Rod for β Heat Treatment - new

B. Patidar, A. P. Tiwari[1], V. Patidar[1], M. M. Hussain[1], K. K. Abdulla[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashatra, India

β heat treatment of Uranium rods is carried out for randomization of oriented grains (called texture) developed during hot rolling or hot extrusion operation. During this process, Uranium rods undergo heating of up to 740 Deg C followed by water quenching. The objective of this work is to see the feasibility of direct heating technique for heat treatment application. At present, heat treatment ...

Optimization of Smart Diaphragm Material for Pressure Sensor in Ventilators

M. Algappan[1], P. C. Chakravarthi[1], R. Keerthana[1], S. Mangayarkarasi[1], A. Kandaswamy[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

A medical ventilator is an imperative device used to save life by delivering an assortment of air and oxygen into and out of the patients’ lungs to administer breathing or to assist obligatory breathing. The commercially available diaphragm based pressure sensors made up of silicon measure the air and oxygen flow. The proposed work utilizes the Piezo electric material for the pressure range ...

Determination of the Fundamental Resonant Modes of a Polysilicon H-Beam Using COMSOL Multiphysics® Software

T. Thomas[1], M. Sundaram[1], R. Bejam[1]
[1]Birla Institute of Technology and Science, Pilani - Pilani Campus, Rajasthan, India

A Polysilicon H-beam is a micro-machined structure consisting of two primary members connected by a third member of much lower width and much greater aspect ratio. This structure exhibits interesting vibration behavior at specific frequencies which are known as resonant modes. A ‘mode’ may be described as a specific physical shape that the vibrating object assumes at peak oscillation amplitude ...

Magnetostatic-Magnon Sensors for Microwave Microscopy of Biological Structures - new

E. Hollander[1], E. O. Kamenetskii[1], R. Shavit[1]
[1]Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

Microwave sensing and monitoring is very attractive for biological applications because of their sensitivity to water and dielectric contrast. Direct detection of biological structures in microwave frequencies and understanding of the molecular mechanisms of microwave effects is considered as a problem of a great importance. Nowadays, however, microwave technique for localized testing biological ...

Convective Cooling of Electronic Components - new

J. S. Crompton[1], H. Singh[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, LLC, Columbus, OH, USA

In response to continued miniaturization and increased multi-functionality of electronic circuits, the number of integrated circuit (IC) packages on the circuit board continues to increase. As a consequence the operating power density increases and significant increases in the operating temperature of devices result. To maintain operation and long term performance device temperature must be ...

Fluid Dynamics Analysis of Gas Stream in a Plasma Torch Reactor - new

C. Soares[1], N. Padoin[1], F. A. Cassini[1], M. Sanchez[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]University of Oklahoma, Norman, OK, USA

Plasma technology has potential applications in a wide range of areas, such as microwave reflectors/absorbers, material processing, sterilization and chemical neutralization. The knowledge about the fluid behavior in such systems has a central role, since the stability of the flow in the region of the electrical arc is essential for the development of a well-behaved torch. In this work, a ...

Effect of Parallel Strip Water Source Spacing on Lateral Infiltration Flux

M. García-Serrana [1], J. L. Nieber [1], J. S. Gulliver [1],
[1] University of Minnesota, Minneapolis, MN, USA

This analysis evaluates the importance of the lateral component of flow on the infiltration of water from parallel strip sources of water on the soil surface. Flow from such sources will be two-dimensional, having both vertical and lateral components. Here we examine the effect of the spacing between parallel strip sources and the texture of the soil on the rate of infiltration through a given ...

Numerical Simulations of Ion Cyclotron Range of Frequency (ICRF) Wave Fields in a Linear Plasma Device

M. Usoltceva [1], K. Crombé [4], E. Faudot [3], S. Heuraux [3], R. D’Inca [2], J. Jacquot [2], J-M. Noterdaeme [5], R. Ochoukov [2]
[1] Department of Applied Physics, Ghent University, Belgium; Max-Planck-Institut für Plasmaphysik, Garching, Germany; Université de Lorraine, Nancy, France
[2] Max-Planck-Institut für Plasmaphysik, Garching, Germany
[3] Université de Lorraine, Nancy, France
[4] Department of Applied Physics, Ghent University, Ghent, Belgium; LPP-ERM-KMS, TEC partner, Brussels, Belgium
[5] Department of Applied Physics, Ghent University, Belgium; Max-Planck-Institut für Plasmaphysik, Garching, Germany

Fusion devices (tokamaks, stellarators) require hundreds of millions degree Celsius temperature to reach the plasma state when the fusion reactions start to occur. Ion cyclotron resonance heating (ICRH) is a method of energy transfer to the ions in the plasma from electromagnetic radiation having a frequency equal to the ion cyclotron motion frequency in the presence of a magnetic field. Studies ...

Multiphysics Analysis of Inductive Brazing Process using COMSOL Multiphysics® Software

A. F. Biju[1], A. Pandey [1],
[1] Honeywell Technology Solutions Lab, Bangalore, Karnataka, India

The objective is to analyze temperature rise and distribution in different parts of an inductive brazing process. This process includes multiphysics phenomena - electromagnetic excitation- eddy heating- heat transfer in solids. AC Inductive heating physics coupled to heat transfer in solid including conduction, convection and radiation effects are modeled using COMSOL Multiphysics® Software.

3D Model of Flow Behavior near Dermal Denticles from Shark Skin

A. N. Kolborg [1],
[1] Technical University of Denmark, Lyngby, Denmark

This project makes a first attempt at modelling fluid flow over shark skin on a microscopic level. The modeled fluid flow shows good agreement with theory. Further refinement of the model parameters holds promises of better understanding of this complex fluid flow phenomenon. The COMSOL Multiphysics® model was evaluated against micro particle image velocimetry measurements of the same flow ...