Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Determination of Process Parameters for Electron Beam Sintering (EBS)

M. F. Zäh, S. Lutzmann, M. Kahnert, and F. Walchshäusl
iwb Anwenderzentrum Augsburg, TU München, Augsburg, Germany

Additive Layer Manufacturing (ALM) methods, like Electron Beam Sintering (EBS), constitute an interesting process concerning the production of small series and customized products. However, transient effects occur during processing due to the different physical principles of an electron beam (EB). Thus, process knowledge from similar ALM technologies, for instance Selective Laser Melting, can ...

Analyzing Muffler Performance Using the Transfer Matrix Method 

K. Andersen
Dinex Emission Technology A/S, Middelfart, Denmark

Exhaust noise must meet legislation targets, customer expectations and cost reduction which call for design optimization of the exhaust systems in the design phase. One solution is to use 3 dimensional linear pressure acoustics and calculate the transfer matrix of the muffler. The transfer matrix is the basis for calculating either the insertion loss or transmission loss of a muffler. The 3D ...

Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres

K. Ehrhold[1], S. Christiansen[1,2], and U. Gösele[1]
[1]Max Planck Institute of Microstructure Physics, Halle, Germany,
[2]Institute of Photonic Technology, Jena, Germany

Plasmonics is a new branch of the fascinating field of photonics and develops concepts to quench light beyond the diffraction limit and enhance electromagnetic fields. These enhancements occur in metals as localized surface plasmon polaritons (LSP) a coupling of the surface density oscillations of the electron gas to the incident light. With threedimensional nano-structures of coinage metals that ...

Numerical Simulations of Spherical Gap Flows

K. Buehler, and J. W. Louw
University of Applied Sciences Offenburg, Germany

Rotating fluids are important in nature and technology. Many applications can be found in the field of meteorology and in rotating machinery. This investigation concerns the application of the swirl flow application mode in COMSOL Multiphysics to simulate nonlinear aspects of flows within spherical geometries. The results show the non-uniqueness of the supercritical solutions and interesting ...

Modelling Coating Lifetime: First Practical Application for Coating Design

T. Machado Amorim [1], C. Allély[1], J. Caire[2]
[1]Arcelor Mittal Research, Maizieres-les-Metz, France
[2]ENSEEG, Grenoble, France

The corrosion at cut-made edges is significant due to the anode to cathode surface ratio in this region. The major problems are the risks of red rust appearance at the exposed steel surface, and the risks of paint delamination in case of insufficient corrosion protection. The work presented here focuses on the development of a 2D FEM model simulating a steady state corrosion situation at a cut ...

Modeling of a Dielectric Barrier Discharge Lamp for UV Production

S. Bhosle, R. Diez, H. Piquet, D. Le Thanh, B. Rahmani, D. Buso
Université de Toulouse, Toulouse, France

Excilamps are artificial Ultraviolet sources based on the emission of excimers or exciplexes. The latter are excited states of weakly bound rare gas or halide/rare gas atoms which emit a photon in the UV region when they dissociate. Dielectric Barrier Discharge (DBD) excilamps are promising UV sources for the future, provided the coupling between their power supply is optimized. The model ...

Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics

I. Knorr, K. Christou, J. Meinertz, A. Selle, J. Ihlemann, and G. Marowsky
Laser-Laboratorium Göttingen e.V., Germany

Raman spectroscopy is a commonly used tool in biodiagnostics and sensor technology. Surface-enhanced Raman scattering provides high signal enhancements especially at nanostructured metallic surfaces. In this paper the electromagnetic Raman enhancement from different metallic nanostructures - including gold coated gratings, spherical and hemispherical particles - is calculated by using the finite ...

Calculation of Cable Parameters for Different Cable Shapes 

H. Lorenzen[1], J. Timmerberg[1], and S. Mylvaganam[2]
[1]Department of Electrical Engineering, UAS OOW, Wilhelmshaven, Germany
[2]Department Technology/Engineering, Telemark University College, Porsgrunn, Norway

Efforts involving simulation of  transmission line networks necessitate the accurate values of the parameters of the lines. In this paper, as an attempt in estimating such parameters, the parameters of high voltage asymmetric power lines are calculated. In the process of estimation, the three phase equivalent circuit model is used. The resistance and inductance of such lines are dependent on ...

Simplified Finite Element Simulation of a SAW Hydrogen Sensor using COMSOL Multiphysics

N. Krishnan[1], H. Nemade[1,2], and R. Paily[2]
[1]Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
[2]Department of Electronics and Communication Engineering, Indian Institute of Technology, Assam, India

In this paper, we discuss a simplified finite element method simulation of surface acoustic wave (SAW) delay line hydrogen sensor using COMSOL Multiphysics.  A delay line SAW sensor consists of a transmitting interdigital transducer (IDT) and a receiving IDT separated by a few wavelengths. In this work, the number of degrees of freedom to solve for the SAW delay line sensor model ...

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

O. Kiriyenko, W. Hergert, S. Wackerow, M. Beleites, and H. Graener
Inst. für Physik, Martin-Luther-Universität Halle-Wittenberg, Germany

Glass containing nanoparticles is a promising material for various photonic applications due to the unique optical properties mainly resulting from the strong surface plasmon resonance (SPR) of the silver nanoparticles. The characteristics of the resonance can be modified by varying size, shape and concentration of the particles. A finite element method (FEM) implemented in the software COMSOL ...

Quick Search