Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Prediction of Temperature and Thermal Stress in Plasma Sprayed Coatings - new

M. Raja[1] , G. Hiremath[1], K. Ramachandran[1], P.V.A. Padmanabhan[2], T.K. Thiyagarajan[2]
[1]Karunya University, Coimbatore, Tamil Nadu, India
[2]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Plasma spraying is one of the prominent technologies for wear, corrosion and high temperature resistant coatings. The coating quality is very important to increase the performance of the components as well as to protect the outer surface of the component from external environment. The coating quality characteristics depend on many plasma process parameters. Among these parameters, distribution ...

Mitigation of Greenhouse Gas Leakage from Oil and Gas Wells

J. S. Crompton [1], H. Spencer [2], J. Thomas [1], K. Koppenhoefer [1]
[1] AltaSim Technologies, Columbus, OH, USA
[2] Seal Well, Calgary, AB, Canada

Pre-existing oil and gas wells and well bores represent highly permeable pathways for leakage of greenhouse gases; in Alberta alone leaks have been estimated to provide the equivalent of 3.5 million tonnes of CO2 per annum. In addition to abandoned wells without plugs, gas leakage may occur when the integrity of wells is compromised by a variety of factors including incomplete construction or ...

COMSOL Multiphysics® Used for Simulating Biological Remodeling

S. Di Stefano [1], A. Grillo [1], M. Carfagna [1], M. Knodel [1],
[1] Politecnico di Torino, Turin, Italy

In this work, we present a mathematical model formulated to simulate the mechanical behavior of articular cartilage. Biological tissues of this kind can be modeled as fiber-reinforced porous media, filled with an interstitial fluid and exhibiting a process of remodeling [2]. With this term, we refer to a class of dissipative phenomena which occur to modify the internal structure of the tissue ...

Modeling Flow and Deformation During Salt-Assisted Puffing of Single Rice Kernels - new

T. Gulati[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. In this context, a fundamentals based study of salt-assisted puffing of rice is described. A multiphase model ...

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable of predicting the actuation behavior of hard- and soft-magnetic MREs. This work simulates the bending of ...

FEM Study on the Effect of Metallic Interdigital Transducers on Surface Acoustic Wave(SAW) Velocity in SAW Devices

A. K. Namdeo, and H. B. Nemade
Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati
Assam, India

In this paper, we present study on the mass loading effect of the interdigital transducer (IDT) on surface acoustic wave (SAW) velocity in SAW devices, using COMSOL Multiphysics. We have simulated a one port SAW resonator made on YZ lithium niobate substrate and investigated the reduction of SAW velocity caused by the mass loading of aluminum IDT fabricated over the substrate, using finite ...

Development of a 10 kW Microwave Applicator for Thermal Cracking of Lignite Briquettes

B. Lepers [1], G. Link [1], J. Jelonnek [1]
[1] Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology, Karlsruhe, Germany

Introduction: The use of microwave energy for thermal cracking (from thermal stress and water pore pressure) of lignite-coal briquettes increases the lignite friability [1] and is beneficial for later chemical treatment inside a gasifier (for methanol production for example). An adequate use of microwave energy can improve the overall efficiency of the gasification process based on lignite ...

Simulation of a Dual Axis MEMS Seismometer For Building Monitoring System

M. A. Shah [1], F. Iqbal [1], B. L. Lee [1],
[1] Korea University of Technology and Education, Cheonan, Chungcheong, South Korea

A dual axis MEMS seismometer targeted for building monitoring system has been simulated for a full scale of ±5g acceleration. The design uses the capacitive effect for vibration sensing. This comb drive capacitive MEMS seismometer consists of 8 springs with two proof masses. The device is very low cross axis sensitive (almost negligible cross axis error). The cross axis sensitivity of x-axis is ...

Development of a Package for a Triaxial High-G Accelerometer Optimized for High Signal Fidelity

R. Langkemper [1], R. Külls [1], J. Wilde [2], S. Nau [1], S. Schopferer [1],
[1] Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI, Freiburg, Germany
[2] Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik, Freiburg, Germany

Acceleration is an important quantity to be measured in high-speed dynamics. A new piezoresistive sensor for the measurement of high-amplitude, short-duration transient accelerations of up to 100,000 g has been developed at the Fraunhofer EMI. Its figure of merit (sensitivity x resonance frequency²) is about one order of magnitude higher than that of comparable state-of-the-art sensors. ...

Identification of the Complex Moduli of Orthotropic Materials using Modal Analysis

F. Van den Abeele[1], J.R. De Oliveira Jr.[2], and F.J. Huertos[1]
[1]OCAS N.V., J.F. Kennedylaan 3, Zelzate, Belgium
[2]Federal University of Minas Gerais, Belo Horizonte, Brazil

It is very difficult to measure the global properties of heterogeneous and anisotropic materials like composites and sandwich structures. When designing composite sandwich applications, the elastic properties are required to perform structural stiffness and strength calculations. However, due to their anisotropic nature, it is not straightforward to measure these properties with traditional ...