Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical and Experimental Study of a Concentrated Indentation Force on Polymer Matrix Composites

V. Antonucci[1][2], M. Esposito[1], R. Marzella[2], and M. Giordano[1][2]
[1]Institute for Composite and Biomedical Materials, CNR, Portici, NA, Italy
[2]Imast, Portici, NA, Italy

A quasi static indentation test on a laminate composite has been investigated numerically and experimentally. In particular, the test has been implemented by COMSOL Multiphysics® and optimizing the Finite Element and mesh. In addition, the numerical strain results have been validated by the comparison with the respective experimental deformation data that have been obtained by fiber Bragg ...

Numerical Modelling Of Moisture Related Mechanical Stress In Wooden Cylindrical Objects Using COMSOL: A Comparative Benchmark

H. Schellen, and J. Van Schijndel
Eindhoven University of Technology, Eindhoven, The Netherlands

For preservation of artefacts in a museum the indoor climate is often restricted to a very narrow interval for temperature, but most of all for relative humidity. In old buildings the museum conditions of artefacts, e.g. near cold walls, mostly are not in line with museum recommendations.To have an impression of indoor museum climates in old buildings, a large number of case studies were carried ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

A Computational Approach for Optimizing the First Flyer Using COMSOL Multiphysics

A.H. Aziz[1], H. Pourzand[1], A.K. Singh[1]
[1]Pennsylvania State University, University Park, PA, USA

COMSOL Multiphysics software was used to structurally optimize the Wright brothers’ flyer. The flyer was drawn in SolidWorks, imported and meshed in COMSOL. COMSOL Solid Mechanics module was used to analyze the flyer. Four of the sixteen struts were removed yet the structural integrity of the flyer was maintained. COMSOL Laminar Flow module was used to compute the aerodynamic forces and ...

Multiphysics Modeling and Simulation of MEMS based Variometer for Detecting the Vertical Speed of Aircraft in Avionics Applications

K. Umapathi[1], K. Sukirtha[2], C. Sujitha[2], K. A. Noushad[2], Venkateswaran[1], R. Poornima[1], R. Yogeswari[1]
[1]United Institute of Technology, Coimbatore, Tamil Nadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

The objective of this work is to develop a MEMS based Variometer to measure the vertical speed and to sense the instantaneous rate of climb or descent in Aircrafts to meet the miniaturization requirements in avionics industry. The design consists of dielectric material in between two micro electrodes. The micro diaphragm is placed on one of the electrode. As the aircraft changes altitude, the ...

Can we use Aquifers to Monitor Magma Chambers? Using COMSOL Multiphysics® to Investigate Subsurface Strain Changes and Their Effect on Hydrological Systems - new

K. Strehlow[1], J. Gottsmann[1], A. Rust[1]
[1]University of Bristol, Bristol, UK

Groundwater-bearing geological layers respond to and modify the surface expressions of magmatic activity, and they can also become agents of volcanic unrest themselves. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes and include a wide range of phenomena and suggested processes to explain them (e.g., Newhall et al., ...

Durability Analysis on Solar Energy Converters Containing Polymeric Materials

J. Wirth, S. Jack, M. Köhl, and K.-A. Weiß
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

The key issues of the Fraunhofer Institute for Solar Energy Systems are research and development of solar technologies for the fast growing market of solar energy. This paper presents examples of the usage of COMSOL Multiphysics: The ingress of water is a serious reason for the degradation of photovoltaic modules which can hardly be measured using experimental approaches yet. Therefore, a ...

Micro Mechanical Exploration of Composites for Superior Properties

R. C. Thiagarajan, and K. V. Chiranjeevi
ATOA Scientific Technologies Private Limited
Bangalore, India

The predictive engineering of materials is matured from predicting properties from known morphology or constituents to engineering novel morphology for superior properties. The focus of this paper is about implementation of computational material mechanics modeling method in COMSOL Multiphysics software for engineering the constituents for superior properties. A brief review of property ...

Designing and Simulating the Performance Analysis of Piezoresistive Fluid Flow Pressure Sensor

K. PraveenKumar[1], P. Suresh[1], K. Subash[1], M. Alagappan[1], A. Gupta[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India.

In this work, we present the performance analysis of novel micro machined Piezoresistive fluid flow pressure sensor using COMSOL Multiphysics. The principle of the sensing mechanism is based on the deflection of four sensing layers embedded on a thin membrane. The fluid passes through the layer causes the deflection of the sensing layer which measures the pressure of the fluid. The following ...

An Analysis of Plunger Temperature during Glass Parison Pressing

P. Ngankeu[1], and E. Gutierrez-Miravete[2]

[1]EMHART Glass Research Inc, Windsor, CT, USA
[2]Rensselaer at Hartford, Hartford, CT, USA

The press and blow (P&B) process is widely used to produce glass containers. While the P&B process has demonstrated to be capable of reducing container weight by as much as 33%, it can also induce the formation of micro-checks that weaken container strength. This paper presents a model of the heat transfer due to the intermittent contact of glass with the plunger during several pressing ...