See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Structural Mechanics and Thermal Stressesx

Simulation of the Transport Phenomena in the Horstberg Geothermal System

A. Hassanzadegan [1], T. Tischner [1],
[1] Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

This study presents the simulation of transport phenomena in the Horstberg geothermal system in the North German Basin. The Horstberg geothermal system composed of a subsurface reservoir and a borehole. The borehole was completed in a multilayer sandstone reservoir and an induced ... Read More

Multiphysics Simulations for the Design of a Superconducting Magnet for Proton Therapy

C. Calzolaio [1], H. Carolin [1], S. Stephane [1],
[1] Paul Scherrer Institut, Villigen, Switzerland

The use of proton therapy for cancer treatment shows a growing trend, since the radiation dose delivered to the target volume is maximized and the dose to the surrounding healthy tissues is minimized. To direct the proton beam from all directions to the tumor in the patient, the last ... Read More

COMSOL Multiphysics® Used for Simulating Biological Remodeling

S. Di Stefano [1], A. Grillo [1], M. Carfagna [1], M. Knodel [1],
[1] Politecnico di Torino, Turin, Italy

In this work, we present a mathematical model formulated to simulate the mechanical behavior of articular cartilage. Biological tissues of this kind can be modeled as fiber-reinforced porous media, filled with an interstitial fluid and exhibiting a process of remodeling [2]. With this ... Read More

Simulating Organogenesis in COMSOL Multiphysics®: Tissue Mechanics during Organ Growth

M. Peters [1], D. Iber [1],
[1] D-BSSE, ETH, Zurich, Switzerland

During growth, tissue expands and deforms. Given its elastic properties, stresses emerge in an expanding and deforming tissue. Cell rearrangements can dissipate these stresses and numerous experiments confirm the viscoelastic properties of tissues. On long time scales, as characteristic ... Read More

3D Modeling of the In-Situ Stress Field in Nordland, Northern Norway

S. Gradmann [1], Y. Maystrenko [1], M. Keiding [1], O. Olesen [1],
[1] Geological Survey of Norway, Trondheim, Norway

Investigating the unusual neotectonic activity in northern Norway provides a number of challenges since both far-field and near-field stresses need to be considered. The far-field background stress strongly controls the overall stress regime. The regional stress field stems from the ... Read More

Design Criteria of the Passive Joints in Underactuated Modular Soft Hands

M. Malvezzi [1], G. Salvietti [1], I. Hussain [2], D. Prattichizzo [1], Z. Iqbal [2]
[1] University of Siena, Siena, Italy; Istituto Italiano di Tecnologia, Genova, Italy
[2] University of Siena, Siena, Italy

The diffusion of underactuated compliant hands is growing in the robotic community due to their robustness, adaptability, capability of exploiting environmental constraints while performing a task, availability and low cost. In particular the interaction with the environment and the ... Read More

Frequency Response of Soil-Structure Interaction for Concrete Gravity Dams

A. De Falco [1], M. Mori [1], G. Sevieri [2],
[1] University of Pisa, Pisa, Italy
[2] University of Florence, Florence, Italy

Seismic evaluation of existing dams is a major issue that has been even more highlighted by the recent events in Italy. In this regard, researchers and engineers need a reliable and quick tool to assess the complex behaviour of the structure – fluid – soil system. In this paper the soil ... Read More

Biologic Tissues Properties Deduction Using an Opto-Mechanical Model of the Human Eye

A. V. Maurer [1], D. P. Enfrun [1], C. O. Zuber [1], R. Rozsnyo [2],
[1] R&D, Kejako, Plan-les-ouates, GE, Switzerland
[2] MNCM, HES-SO, GE, Switzerland

The visual accommodation is a complex biomechanical & optical process. Today in vivo imaging technologies do not allow to measure the eye components material properties, such as the refractive index or the stiffness: these properties are essential to understand and diagnose the ... Read More

Phase Transformation and Deformation Model for Quenching Simulations

Y. Kaymak [1],
[1] VDEh Betriebsforschungsinstitute GmbH, Düsseldorf, Germany

Heat treatment of the advanced steel grades (like micro-alloyed steels or AHSS steel grades) is a challenging process as the residual stress/deformation are very pronounced and the customer quality requirements are getting stricter. Instead of a trial and error based process control, a ... Read More

Thermal Model and Control of Metal-Organic Chemical Vapor Deposition Process

J. L. Ebert [1], S. Ghosal [1], N. Acharya [1]
[1] SC Solutions, Inc., Sunnyvale, CA, USA

Metal-Organic Chemical Vapor Deposition (MOCVD) is used for the manufacture of Multi-Quantum Well Light Emitting Diodes (MQW LEDs). The process uses a carrier gas flow containing a dilute mixture of metal organic precursors, Tri-Methyl Gallium (TMG) and Tri-Methyl Indium (TMI), to ... Read More