Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Phase-field Modeling of Widmanstätten Ferrite Formation During Austenite to Ferrite Transformation in Fe-C Alloy - new

L. Zhang[1], Y. Shen[1]
[1]School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

The transformation of austenite (A) to ferrite (F) in steels, which is technologically important and of fundamental interest, still remains less well understood in some aspects. At intermediate undercooling F grows with a plate-like morphology (widmanstätten). Some calculations, which assume that the composition at A/F boundary is local-equilibrium or the morphology of F is rather simple, are ...

Optimization and Simulation of MEMS Based Thermal Sensor for Performance of Transformer Oil

V. Vijayalakshmi[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

In this work, a bimetallic strip based thermal sensor was designed using MEMS module of COMSOL Multiphysics® software to monitor the temperature rise in insulating oil which was used as coolant in transformers. The bimetallic strip was designed with different shapes such as cylindrical, rectangle, square & conical and different compositions such as Al/Steel Alloy and Fe/Cu which can withstand ...

Thermal Simulation of FCBGA Package with Heat Sink

M. R. Naik[1]
[1]Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

In a modern IC design, the capability of predicting the temperature profile is critically important as well as cooling and related thermal problems are the principal challenges. To address these challenges, thermal analysis must be embedded within IC synthesis. This paper presents thermal analysis of the FCBGA chip with a 4mm×4mm×0.3mm silicon die. The silicon die dissipates heat flux of ...

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Finite Element Modeling a Redox-Enzyme-Based Electrochemical Biosensor

Y. Huang[1], and A. Mason[1]
[1]Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA

This paper describes the modeling of an electrochemical biosensor embedded in a microfluidic channel to determine the concentration of a target biomolecule. The total amount of analyte in the sample can be calculated by integrating the analyte concentration over the duration of the peak current. The biosensor is constructed by immobilizing redox-enzyme on an interdigitated array (IDA) electrode ...

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate of liquid transport inside the heat pipe. We propose a novel array of microfabricated pillars to maximize liquid ...

Modeling the Collimator-Detector Scattering Using Stochastic Differential Equations and COMSOL

A. Jeremic[1], T. Farncombe[2], S. Liu[2], and Y. Abdul-Rehman[1]
[1]Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
[2]Department of Radiology, McMaster University, Hamilton, Ontario, Canada

Single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique that uses gamma rays. It has been especially useful for bone scans, cardiac perfusion imaging, tumor scans and brain imaging. The main advantage of SPECT imaging is that it can target particular tissue receptors allowing one to focus on the imaging of the diseased tissue. In most cases Monte Carlo ...

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Optimization of a Thermal Actuator for Low Power/Low Cost Applications

R. Zúñiga-Quesada[1], M. Vílchez-Monge[1], P. Vega-Castillo[1]
[1]Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

This work describes the study of a thermal actuator and modifications to the materials employed in order to decrease power consumption and implementation costs. For this study, we worked on improving the thermal actuator described in the work of T. Ebefors. The criteria for choosing the new materials were lower power consumption, commercial availability, and ease processing. The thermal actuator ...

Quick Search

2661 - 2670 of 2857 First | < Previous | Next > | Last