Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Radiation Dose from Diagnostic X-ray Beams

H. Chen-Mayer[1], R. E. Tosh[1]
[1]NIST, Gaithersburg, MD, USA

Direct realization of absorbed dose to water in diagnostic radiation via calorimetric methods poses many challenges since the thermal signal of interest may be less than a few microKelvin. In actual biological systems or structures, like the lung, there is the additional complication of tissue heterogeneity, which introduces a quasi-random component to the dose distribution, hence to thermal ...

Flow-induced Vibrations of the Uvula and its Implication on Snoring

J. Xi[1], Q. M. Mohamad[1], Y. E. Yuan[1], J. Rohlinger[1]
[1]Mechanical and Biomedical Engineering, Central Michigan University, Mount Pleasant, MI, USA

1. Flow-induced uvula deformation considerably altered the flow dynamics inside the nose. 2. For a weak soft palate, complete flow occlusion can occur (sleep apnea). 3. Vibration of the airway structures is crucial to better understand snoring generation mechanisms and breathing-related disorders.

Simulation of Transdermal Toxin Expulsion via Adsorptive Dermal Patch using COMSOL Multiphysics®

H. Kwon[1], M. Hess II[1], R. M. Polski
[1]Andrews University, Berrien Springs, MI, USA

Mathematical skin models play an important role in fields such as transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been conducted on modeling skin for transdermal drug delivery; however, little effort has been made to view the skin as a permeable layer to expel waste chemicals or toxins from the body. In this work, we focused on topical ...

Early Breast Cancer Detection using Patient Symptomatic Breast Images by Finite Element Analysis Aided by COMSOL

Tan Ming Sien[1]
Devendran Perumal[1]
Sri Pooveyninthran[1]
Samavedham Lakshminarayanan[2]
Balu Ranganathan[3]

[1]Department of Chemical and Natural Resources Engineering, University of Malaysia Pahang, Pahang, Malaysia
[2]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
[3]Center for Excellence for Fluid Flow Research, University of Malaysia Pahang, Pahang, Malaysia

In this project, we attempted to determine the drug concentration in a breast cancer tumor after a drug has been delivered. We created a COMSOL Multiphysics® finite element model. We investigated the relationship between drug delivery efficiency and parameters such as diffusivity, deepness of the tumor, and the temporal and spatial placement of the transdermal patch that delivers the drug. We ...

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, etc.) and drying the solution convectively. We are currently developing a model that couples the two-phase ...

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

H. Ishimori[1], K. Endo[2], H. Sakanakura[2], M. Yamada[2], M. Osako[2]
[1]Ritsumeikan University, Kusatsu, Shiga, Japan
[2]National Institute for Environmental Studies, Tsukuba, Ibaraki Prefecture, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for containment of hazardous waste such as radiocesium-contaminated MSW generated by Fukushima Daiichi nuclear ...

Numerical Quasi Stationary and Transient Analysis of Annular Linear Electromagnetic Induction Pump

L. Goldsteins[1], L. Buligins[2], Y. Fautrelle[3], C. Biscarrat[1], S. Vitry[1]
[1]CEA Cadarache, Saint Paul lez Durance, France
[2]University of Latvia, Riga, Latvia
[3]Grenoble Institute of Technology, Grenoble, France

In this paper an axisymmetric model of annular linear electromagnetic induction pumps using numerical methods and four approaches (two transient and two quasi-stationary) with different complexity is studied. Comparison of integral characteristics is performed between numerical approaches and also with analytic estimations. Distributions of physical parameters over length and height of channel ...

Influence of the Atmospheric Disturbance on the Respiration of a Forest Soil

C. Wylock[1], S. Goffin[2], M. Aubinet[2], B. Longdoz[3], B. Haut[1]
[1]Université Libre de Bruxelles (ULB), Transfers, Interfaces and Processes (TIPs), Brussels, Belgium
[2]University of Liège-Gembloux Agro-Bio Tech, Unit of Biosystem Physics, Gembloux, Belgium
[3]INRA, Centre INRA de Nancy, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France

The assessment of forest soil respiration and its isotopic composition is one of the important issues for the carbon cycling modeling (greenhouse gas emission control) because it is often inaccurate. Soil respiration is a complex process, depending on the coupling of several phenomena, which is therefore highly sensitive to any disturbance. In this work, the dynamics of the transport of two ...

Numerical Study of Local Density of States in Photonic Crystal Waveguides

A. Javadi[1], P. Lodahl[1]
[1]Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

In this contribution we study how a planar photonic crystal waveguide (PhCW), created by introducing a line defect in the photonic crystal, can modify the projected local density of states (LDOS) for a dipole emitter. We use the COMSOL Multiphysics® RF Module to carry out eigenvalue calculations studies on PhCW. When the dipole is in resonance with the waveguide mode, the enhancement Fp of ...

Hierarchical Modeling of Polymer Electrolyte Membrane Fuel Cells

J. Dujc[1], J.O. Schumacher[1]
[1]Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics (ICP), Winterthur, Switzerland

A finite element model of a polymer electrolyte membrane fuel cell (PEMFC) is described in this paper. We divide the PEMFC into two separate and parallel 2D regions which are connected by the 1D regions representing the membrane electrode assembly (MEA). COMSOL Multiphysics® was used as a development tool for hierarchical 1D MEA models. Here we present a 1D model that is based on seven governing ...

2661 - 2670 of 3391 First | < Previous | Next > | Last