Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Traveling Wave Ultrasonic Vibration Disk for Nano-particles in Liquid Dispersion

J. Muraoka, and T. Suzuki
Yamagata Research Institute of Technology
Yamagata
Japan

The traveling wave ultrasonic vibration disks for dispersion of particles were designed by using of FEM analysis. The vibration disks are required specific vibration pattern, which contains three nodal lines. The vibration disk thickness was calculated to be matched the resonance frequency of bolted langevin type transducer and the specific vibration pattern. The alignment of the transducer was ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil on magnetic energy density was described. In cause of magnetic anisotropy of analyzed silicon structure FEM method and couple field method was applied in simulation. The Lorentz force based sensors owing to their potentially simpler ...

Support-Q Optimisation of a Trapped Mode Beam Resonator - new

T. H. Hanley[1], H. T. D. Grigg[1], B. J. Gallacher[1]
[1]Newcastle University, Newcastle-Upon-Tyne, UK

Introducing a disorder into a finite periodic oscillatory system induces the presence of a 'trapped mode': a mode in which the displacement field is localised to the region of the disorder. A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy radiation through the support to the substrate. The trapped modes present a way to tune this to a minimal value. An initial ...

Finite Element Analysis of Contact Studies of Radio Frequency MEMs Switch Membranes

J. Liu [1], V. B. Chalivendra [1], C. Goldsmith [1], W. Huang [1]
[1] University of Massachusetts - Dartmouth, Dartmouth, MA, USA

Radio frequency (RF) micro-electro mechanical system (MEMS) switch works in on/off modes controlled by electrostatic forces. In off mode, rough surfaces of electrodes come into a contact. Membrane contact surfaces have complex surface roughness patterns and the mechanical contact problem is very challenging to understand. The capability to predict contact quality becomes extremely important to ...

Thermomechanical Effects of the Packaging Molding Process on the Chip in Integrated Circuits - new

N. Semmar[1], M. Fournier[1], P. S. Alleaume [2], A. Seigneurin [3], , ,
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France
[2]Collegium Sciences et Techniques, Orléans, France
[3]ST Microelectronics Tours SAS, Tours, France

Usually, in integrated circuits, the chip is brazed on leadframe and then, a polymer resin is molded around to create the packaging. On the first hand, the molding process at high temperatures will induce thermomechanical stress on the chip. As the leadframe, the chip and the braze have all different thermoelastic properties, these stress can be critical for the chip connections. To ...

CMOS Based Atom Chips for Sensor Applications

Ph. Neuman [1], A. Nemecek [1], C. Koller [2]
[1] Department for Micro-and Nanosystems, University of Applied Sciences Wiener Neustadt, Austria
[2] Department for Micro-and Nanosystems, University of Applied Sciences Wiener Neustadt, Austria, and School of Physics and Astronomy, University of Nottingham, Nottingham, UK

Ultra-cold atomic systems have proven over the last decade to be a excellent platform for the realization of quantum sensors, quantum computation or quantum simulation applications. A special implementation of this technology is the so called atom chip, where the magnetic fields generated by wires on a semiconductor chip will result in elaborated trapping potentials for the atomic ensembles. ...

Electro-Thermal Modeling of High Power Light Emitting Diodes Based on Experimental Device Characterization  

T. Lopez[1], and T. Margalith[2]

[1]Philips Research, Aachen, Germany
[2]Philips Lumileds Lighting Company, San Jose, CA, USA

This paper presents a 3D finite element model in COMSOL for the electro-thermal analysis of high power light emitting diodes (LEDs). The proposed model and implementation approach require basic electrical and optical parameters that may be experimentally derived with the aid of advanced post-processing techniques. Extensive experimental validation reveals the capability of the model to ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to ...

Study of Fluid Dynamics and Heat Transfer in MEMS Structures

S. N. Das[1], G. Bose[2]
[1]Centurion University of Technology and Managment, Jatani, Bhubaneswar, Orissa, India
[2]Institute of Technical Education and Research, SOA University, Bhubaneswar, Orissa, India

This paper describes the characteristics of MEMS microchannel and various issues of its designing. Here the major parameters are pressure drop and heat transfer rate. Various structures are modeled and optimized to get a minimum pressure drop and maximum heat transfer rate. The simulation results provide the characterization for Temperature, Mass flow rate, Pressure drop and Reynolds number. ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...