Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Radiation Dose Response in Phantom for CT

H. Chen-Mayer[1], R.E. Tosh[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The radiation dose produced by an x-ray CT scanner to the patient is conventionally referenced to measurements performed by an ionization chamber in a phantom. On a fundamental level, the radiation absorbed dose, J/kg, can be determined directly by the temperature rise in the absorbing material. We model the temperature response in a high density polyethylene (HDPE) phantom. Use of ...

Computational Design and Optimization of Bone Tissue Engineering Scaffold Topology

N. P. Uth [1], J. Mueller [2], B. Smucker [3], A. Yousefi [1],
[1] Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, USA
[2] Research Computing Support, Miami University, Oxford, OH, USA
[3] Department of Statistics, Miami University, Oxford, OH, USA

Introduction: Bone tissue has a limited ability for regeneration; critically sized defects cannot self-heal and require medical intervention. Bone tissue engineering (TE) circumvents this issue by growing replacement bone tissue from the patient’s own cells inside scaffolds. TE scaffolds are porous constructs that act as a support structure during bone regeneration and helps cells attach and ...

Mathematical Modeling of Glucose Responsive Hydrogels

A. Pareek [1], T. Mathur [2], V. Runkana [1],
[1] Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
[2] Indian Institute of Technology, Delhi, India

Diabetes mellitus affects 387 million people across the world according to the latest estimates of International Diabetes Foundation. Insulin is one of the major drugs required to keep the glucose level within desired limits in a diabetic patient. Insulin is generally administered to a patient as a subcutaneous injection and consists of two forms namely, basal and bolus. The basal dosage is ...

Hemodynamic Therapy of Middle Cerebral Artery Vasospasm Guided by a Multiphase Model of Oxygen Transport

S. Conrad[1,2], P. Chittiboina[3], and B. Guthikonda[3]

[1]Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
[2]Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
[3]Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA

Cerebral vasospasm is a complication of subarachnoid hemorrhage and other neurosurgical emergencies that reduce blood flow to the brain. Part of the approach to management of vasospasm is to improve flow through the stenotic areas by reducing by decreasing blood viscosity and enhancing flow through the stenosis. To examine the interaction of these factors, we applied computational fluid ...

Image-Based Simulation of Electrical Impedance Techniques Applied on the Human Thorax for Cardio-Pulmonary Applications

F.K. Hermans[1], R.M. Heethaar[1], R.T. Cotton[2], and A. Harkara[2]


[1]VU University Medical Center, Amsterdam, The Netherlands
[2]Simpleware Ltd., Exeter, United Kingdom

For medical diagnostic purposes there is an increasing need for non- (or minimal) invasive techniques to measure all kinds of parameters that can provide insight in the functioning of cells, organs or organ systems. Currently, Impedance Cardiography (ICG) is used for measurements of the heart and Electric Impedance Tomography (EIT) is used for investigating lung tissue condition. This paper ...

Magnetic Fields and Materials for Medical Bone Reconstruction Assisted by Advanced Finite-Element Simulations

A. Sytcheva[1] and T. Herrmannsdörfer[1]
[1]Hochfeld-Magnetlabor Dresden, Forschungszentrum Dresden-Rossendorf, Dresden, Germany

We address the use of magnetic fields, forces, and materials for medical purposes. In particular, the treatment of osteochondral lesions is aimed for. To support ongoing activities in this field of research, last advances in using Finite Element Analysis (FEA) for the simulation of relevant processes, like magnetic targeting and magnetic fixation are reported. The availability of advanced ...

Modeling Interface Response in Cellular Adhesion

G. Megali[1], D. Pellicanò[1], M. Cacciola[1], F. Calarco[1], D. De Carlo[1], F. Laganà[1], and F.C. Morabito[1]

[1]DIMET Department, Faculty of Engineering, University “Mediterranea” of Reggio Calabria, Reggio Calabria, Italy

Constitutive properties of living cells are able to withstand physiological environment as well as mechanical stimuli occurring within and outside the body. We examined fluid flow and Neo-Hookean deformation related to the rolling effect. A mechanical model to describe the cellular adhesion with detachment is here proposed. We developed a finite element analysis, simulating blood cells attached ...

Computationally Assisted Design and Experimental Validation of a Novel ‘Flow-Focussed’ Microfluidics Chip for Generating Monodisperse Microbubbles

M. Conneely[1], V. Hegde[2], H. Rolfsnes[1], A. Mason[2], D. McLean[1], C. Main[1], F.J.D. Smith[2], W.H.I. McLean[2], P.A. Campbell[1]
[1]Carnegie Physics Laboratory, University of Dundee, Dundee, Scotland, United Kingdom
[2]Division of Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom

Whilst initially developed as a diagnostic aid to improve echogenicity in ultrasound imaging, gas-filled lipid microbubbles are now emerging as a next generation \'theranostic\' tool in the medical arena. Here, their therapeutic potential has now been realized through their unique capability to deliver molecular species such as drugs and genes by means of disrupting the cell membrane in response ...

Deformable Image Registration for Pleural Photodynamic Therapy

B. Liu[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Deformable image registration is a form of medical image processing that can provide insights into the development of phenomenon and variation in normal anatomical structure over time. Prior to post-operative pleural photodynamic therapy (PDT), a series of CT scans of lungs will be acquired. During PDT treatment, an infrared navigation system is used to contour the lungs and provide real-time ...

Design and Simulation of Electroactive Polymer-Based Artificial Muscles for Biomedical Application

A. S. Tripathi [1], B. P. Chatterjee [2], S. Das [3],
[1] Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
[2] Dept. of Cardiology, Medical College and Hospital, Kolkata, India
[3] School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India

Electro-active polymer (EAP) based actuators are one of the suitable contenders for use in artificial muscles based bio-medical application because of their bio compatibility and lower active actuation voltage requirement phenomenon. At present Ionic polymer metal composites (IPMC), a type of EAP based actuator are being developed for various applications. IPMC actuator generally consist ...