Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Three-Dimensional (3D) Modeling of Heat and Mass Transfer during Microwave Drying of Potatoes

H. Zhu[1][2], T. Gulati[2], A. K. Datta[2], K. Huang[1]
[1]Institute of Applied Electromagnetics, Sichuan University, Chengdu, China
[2]Department of Biological and Environment Engineering, Cornell University, Ithaca, NY, USA

Microwave drying of fruits and vegetables in a domestic oven has been found to result in large textural changes in the product such as puffing, crack formation and even burning due to the inhomogeneous heating of the microwaves. Microwave drying of potatoes is a complex interplay of mass, momentum and energy transport. Three phases are considered in the system: solid (skeleton), liquid (water) ...

Effect of Antenna Deformation on Performance

J. Persad [1], S. Rocke [1], A. Abdool [1], D. Ringis [1],
[1] Department of Electrical and Computer Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago

Ubiquitous, unobtrusive wearable computing has tremendous potential for impacting many applications including medical, personal entertainment and surveillance. Advances in the underlying technology have allowed for consistent reduction in the size and weight of emerging solutions, with increasing subsystem integration. A key component for the realisation of these systems is the short and long ...

Electromagnetic Modeling of a Millimeter-Wavelength Resonant Cavity

J. C. Weatherall [1], J. Barber [1], B. T. Smith [2], J. Greca [1],
[1] Battelle Memorial Institute, Norwell, MA, USA
[2] U.S. Department of Homeland Security, Science and Technology Directorate, Washington, DC, USA

The measurement of dielectric constant at frequencies of 20 GHz or greater is important for specifying the optical properties of materials at millimeter wavelength. One method of measurement uses a resonant cavity containing a sample of the material, and relates the resonant frequency and quality factor of the resonance to the complex dielectric constant through electromagnetic simulation. ...

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

Enhancing Fluorescence of Diamond Color Centers near Gold Nanorods via Geometry Optimization

M. Csete [1], A. Szenes [1], L. Zs. Szabó [1], G. Szabó [1], T. Csendes [2], B. Bánhelyi [2],
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Institute of Informatics, University of Szeged, Szeged, Hungary

Detecting light emitted by fluorescent molecules with resolution down to single photon is an important problem in various fields of sciences and applications, such as solid-state physics, quantum information processing and medicine. The detection probability can be improved via enhancement of excitation and emission. Enhancement both of these processes can be reached by localized surface plasmon ...

Resonances in Tapered Double-Port TEM Waveguides

J. Kaerst
HAWK, Fachhochschule Hildesheim/Holzminden/Göttingen, Germany

In this paper resonances in tapered double-port TEM waveguides are used as benchmark for simulations. FEM simulations with COMSOL Multiphysics® and simulations using generalised telegraphist's equations with MATLAB® are compared to ananalytical method capable of calculating the resonances of higher order modes. It is valid for tapered double-port TEM waveguides with constant ...

Modeling Plasmonic Structure Integrated Single-Photon Detectors to Maximize Polarization Contrast

M. Csete [1], A. Szenes [1], G. Szekeres [1], B. Banhelyi [2], T. Csendes [2], G. Szabo [1],
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Institute of Informatics, University of Szeged, Szeged, Hungary

Introduction: Single-photon detectors capable of ensuring high fidelity read-out of quantum information delivered via photons of specific polarization are crucial in QIP [1]. Our previous studies have shown that different types of one dimensional plasmonic structures enhance the absorptance of p-polarized light [2, 3]. The purpose of present study was to optimize four different types of ...

Enhanced Spontaneous Emission in Plasmonic Nanostructures

Jun Yi [1], Song-Yuan Ding [2],
[1] State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
[2] Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, China

Spontaneous emission -- an electron in an excited state of an emitter spontaneously decays to another state with lower energy -- plays an important role in determining the performance of light-emitting diodes, fluorescent dyes, colorants, solar cells, etc. The efficiency of spontaneous emission is determined by the interaction between the emitter and its local electromagnetic environment(1, 2), ...

Visible Spectral Reflectance Analysis in a Metal-Insulator-Metal (MIM) Multilayer with COMSOL Multiphysics

Y. Oshikane[1], K. Murai[1]
[1]Osaka University, Suita City, Osaka, Japan

We are developing a reflective metal-insulator-metal (MIM) filter with narrow band absorption. In the MIM structure, the interaction between subwavelength multilayer and visible light, and the resultant surface plasmon resonance (SPR) in specific illumination conditions must be understood. Such electromagnetic field interactions have been analysed using COMSOL Multiphysics and RF Module.

COMSOL Multiphysics® Investigation of Radiative and Nonradiative Channels of Quantum Emitter Fluorescence near Hyperbolic Metamaterial

A. Pavlov[1], V. Klimov[1], I. Zabkov[2], D. Guzatov[3]
[1]Lebedev Physical Institute, Moscow, Russia
[2]Moscow Institute of Physics and Technology, Dolgoprudnj, Russia
[3]State University of Grodno, Grodno, Belarus

Effective control over single atom emission might lead to major breakthrough in the field of nanotechnology. It is believed that use of hyperbolic metamaterials (HMM) can be helpful. COMSOL Multiphysics® was used to model interaction of electric dipole with effective HMM and calculate emission rate of dipole in comparison to that value in the absence of metamaterial. Dielectric nanoantennas of ...