See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Model of Heat and Mass Transfer with Moving Boundary During Roasting of Meat in Convection-Oven

A.H. Feyissa[1], J. Adler-Nissen[1], and K.V. Gernaey[2]
[1]Food Production Engineering, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
[2]Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

A 2D mathematical model of coupled heat and mass transfer describing oven roasting of meat was formulated from first principles. The current formulation of model equations incorporates the effect of shrinkage phenomena and water holding capacity. The model equations are based on ... Read More

3D Electro-Thermal Study for Reliability of Automotive Power Vertical MOSFET Using COMSOL Multiphysics®

T. Azoui[1], S. Verde[1][2], J.B. Sauveplane[1], and P. Tounsi[1]
[1]LAAS-CNRS, Toulouse, France
[2]Department of Electronics and Telecommunications Engineering, University of Naples Federico II, Naples, Italy

In this paper 3D electro-thermal FE Model using COMSOL Multiphysics® software of power vertical MOSFET used in the automotive industry is presented. This model is used to analyze the effects of bonding wire lift off defect and to study the influence of metallization thickness and ... Read More

Thermal Simulation and Package Investigation of Wireless Gas Sensors

A. Paoli[1], L. Seminara[2], D.D. Caviglia[1], A. Garibbo[2], and M. Valle[1]

[1]Department of Biophysical and Electronic Engineering, University of Genova, Genova, Italy
[2]SELEX Communications S.p.A., Genova, Italy

Gas sensor arrays based on metal oxides operating at high temperature are commonly used in many application fields. They can operate on different principles and each sensor may show very different responses to the individual gases in the environment. Data coming from the array can be ... Read More

Chip Drop After Silver Sintering Process

M.H. Poech[1], M. Weiß[1], and K. Gruber[1]

[1]Fraunhofer Institute for Silicon Technology, Itzehoe, Germany

Since a couple of years, sintering becomes more and more important for power electronics. To press a semiconductor under high temperature in silver paste on a substrate promises benefits for durability. Tests with semiconductors of different thickness expose some problems. After the cool ... Read More

Multi-Scale Modelling of Catalytic Microreactors

B. Hari[1] and C. Theodoropoulos[1]
[1]The University of Manchester, School of Chemical Engineering and Analytical Science, Manchester, UK

Microreactors are important alternative to conventional reactors in chemistry, chemical, pharmaceutical and semiconductor industries due to their operation characteristics such as increased mass and heat transfer, uniform flow, safety, high throughput through array configurations, ... Read More

Safe Storage Parameters During CO2 Injection Using Coupled Reservoir-Geomechanical Analysis

T.I. Bjørnarå[1], E. Aker[1], and E. Skurtveit[1]
[1]NGI, Oslo, Norway

Safe short term storage of CO2 depends mainly on structural and solubility trapping. On longer term, mineral trapping is also contributing to the trapping of CO2. To be able to investigate the importance of these different storage mechanisms, a finite element model for simulation of CO2 ... Read More

Simulating the Influence of the Nozzle Diameter on the Shape of Micro Geometries Generated with Jet Electrochemical Machining

A. Schubert[1][2], M. Hackert[1], and G. Meichsner[2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure for micromachining. Based on localized anodic dissolution three-dimensional geometries and microstructured surfaces can be manufactured using Jet-ECM. COMSOL Multiphysics is used at Chemnitz UT to simulate the ... Read More

Study of Artificial Molecular Engines Action Through COMSOL Multiphysics® Program

L. Moro[1], F. Lugli[1], and F. Zerbetto[1]

[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

Rotaxanes are a class of molecules recently developed in laboratory that have been heralded as possible molecular motors. The motor is constituted by a linear molecule (thread) and a ring-shaped molecule (macrocycle), which is free to move along the thread, switching between two, or ... Read More

A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials

J. Schumacher[1], P. Fideu[2], G. Ziegmann[1], and A. Herrmann[3]
[1]TU Clausthal-Institute of Polymere Materials and Plastic Engineering, Clausthal-Zellerfeld, Germany
[2]CTC GmbH Stade, Stade, Germany
[3]Faserinstitut Bremen e.V., Bremen, Germany

The current paper focuses on the creation of a consistent environment for the numerical prediction of the physical properties of polymer composite. A limitation factor for the successful simulation of composite processes is the correct estimation of the effective properties depending on ... Read More

3D Simulation of the Thermal Response Test in a U-tube Borehole Heat Exchanger

L. Schiavi[1]

[1]Dipartimento di Ingegneria Industriale, Università di Parma, Parma, Italy

Simulated Thermal Response Test (TRT) data are analyzed in order to evaluate the effect of the tridimensionality model’s feature in determining the proper value of the soil thermal conductivity and borehole thermal resistance. The 3D system’s simulation during the TRT is ... Read More