Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of Tissue Morphogenesis as the Resultant of Constitutive Cells Activities

L. Forest
Laboratoire Techniques de l'Imagerie, de la Modélisation et de la Cognition, Faculté de Médecine, Domaine de la Merci

The aim of this work is to study tissue morphogenesis as a consequence of the constitutive cells dynamics. Tissue morphogenesis is modelled as a cellular system coupled with a global chemical control. p> Two concrete examples are presented, the secondary growth of conifer trees and the epithelial invagination.

Mathematical Modeling of Autoregulation using Finite-Element Method

Aleksandar Jeremic
Assistant Professor
Department of Electrical and Computer Engineering
McMaster University
Hamilton, Canada

In this presentation, cerebral blood flow (CBF) is modeled using a mathematical model, a statistical model and numerical examples. In the mathematical model, blood flow is described using Navier-Stokes equations. In the statistical model, the experiments or the data measurement process is simulated and to study how the noise in the measurements affects the ability to estimate the parameters, ...

Modeling Flow Through Foam Channels

F. Rouyer, E. Lorenceau, and O. Pitois
Laboratoire de Physique des Matériaux Divisés et des Interfaces, Université Paris-est, Paris, France

We model the liquid transport in foam (i.e. drainage) by unidirectional flow transverse to a triangular planar area that represents channel (i.e. Plateau borders) cross-sections. Partial mobility of the interfaces is obtained balancing the bulk viscous stress with the surface viscous stress and a velocity equal to zero is imposed at the vertices. In liquid foams, the wedges of the channels are ...

Transport in reactive porous media containing biofilms

G. Debenest, Y. Aspa, and M. Quintard
IMFT, GEMP group, Toulouse, France

The objective of this presentation is the evaluation of effective bulk transport properties of reactive porous biofilm. We present our microscale model that accounts for both momentum and mass balances.

Heat Transfer Effects in a Water Calorimeter for Measuring the Absorbed Dose of Therapy-Level Radiation Beams

R. E. Tosh, and H. H. Chen-Mayer
National Institute of Standards and Technology, Gaithersburg, MD, USA

Water calorimetry that directly measures the temperature rise (at the mK level) due to radiation heating is used as a primary standard for therapy-level gamma-radiation beams. The temperature rise is measured at a given point in space where the spatial distribution of the absorbed dose is non-uniform, and therefore is subject to heat conduction and convection distortions that must be corrected to ...

Mathematical Modeling of Atheroma Plaque Deformation using COMSOL Multiphysics

N. El Khatib1, S. Genieys1, M. Zine2, and V. Volpert1
1Institut Camille Jordan, Université Claude Bernard, Lyon, France
2Département Maths & Informatique, Ecole Centrale de Lyon, Lyon, France

The development of atherosclerosis leads to the formation of an atheroma plaque which takes place in the artery. This plaque is composed of two parts: a lipid deposit and a fibrous cap. The fibrous cap covers the lipid deposit and isolates it from the blood flow. The blood flow that circulates in the artery modifies the geometry of the atheroma plaque and can cause dangerous effects, such as a ...

Modeling Materials through a Phase Transition: Using COMSOL Multiphysics and Applying Physics First Principles Techniques

R. W. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

This paper presents a new phase transition model that is easily created and runs rapidly. It is designed so that the modeler can determine immediately the relative accuracy of the end result by use of the first principles of physics.Phase transitions are readily observable in many commonly utilized engineering materials. In fact, most modern devices and/or tools employ a phase transition in their ...

Simulation of Dielectric Barrier Discharge Lamp Coupled to the External Electrical Circuit

A. El-Deib[1], F. Dawson[1], S. Bhosle[2], D. Buso[2], and G. Zissis[2]
[1]University of Toronto, Toronto, Ontario, Canada
[2]LAPLACE-University of Toulouse, Toulouse, France

This work uses COMSOL to simulate the Dielectric Barrier Discharge (DBD) lamp coupled to the external electrical circuit. The coupled system is modeled to capture the effect of the electrical parasitic elements on the efficiency of the DBD which is more realistic as compared to previous trials which assumed that a perfect voltage source is applied to lamp terminals. The obtained results ...

Effect of Local Deformation on the Emission Energy of  Quantum Dots in a Flexible Tube

S. Kiravittaya[1], P. Cendula[2], A. Rastelli[2], and O. Schmidt[2]
[1]Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
[2]Institute for Integrative Nanosciences, Dresden, Germany

Strain induced by local deformation of a flexible micrometer-sized semiconductor tube is quantified by modeling a ball pressing on the tube wall. By changing the pressing condition, we are able to change the strain state of the tube wall incorporating self-assembled quantum dots (QDs) in the wall. The QD emission energy is calculated in COMSOL® by solving the Schrödinger wave equation ...

Design for Reliability and Robustness through Probabilistic Methods in COMSOL Multiphysics with OptiY

T.-Q. Pham[1], H. Neubert[2], and A. Kamusella[2]
[1]OptiY e.K., Aschaffenburg, Germany
[2]Institute of Electro-Mechanical and Electronic Design, TU Dresden, Germany

One challenge in designing micro-electromechanical systems (MEMS) is considering the variability of design parameters caused by manufacturing tolerances and material properties. The function of MEMSs is significantly influenced by this variability, which can be represented in terms of statistical variables. In order to involve statistical design parameters into the design optimization process, we ...

Quick Search

3201 - 3210 of 3605 First | < Previous | Next > | Last