Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multi-Layers Surface Coil Design: Geometry Optimization - new

S. Aissani[1], L. Guendouz[2]
[1]CRM2, Institut Jean Barriol, University of Lorraine, Vandoeuvre-lès-Nancy, France
[2]Mesures et architectures électroniques, University of Lorraine, Vandoeuvre-lès-Nancy, France

Nuclear Quadrupole Resonance (RQN) is a radio frequency (RF) spectroscopic technique that is used to detect quadrupole nuclei such as Nitrogen-14. NQR was found to be a good candidate for detecting narcotics, explosives and medicines [1]. However, due to its low sensitivity the use of NQR is still limited. One way to increase the sensitivity is to improve the RF coil by means of a better RF ...

Two Step Study of Flow in an Industrial Pulp Screen, Solved with the COMSOL Multiphysics® Mixer Module - new

R. Wetind[1]
[1]Wetind Technology AB, Alnö, Sweden

An industrial pulp screen is investigated. The dilute pulp is pumped through a screen barrier. In order to avoid the fiber network to plug, it is necessary to 1) fluidize the shear thinning pulp 2) expose the barrier with plug releasing pressure pulses. This work involves a 2-step study. Step 1: The full screen flow is simulated using Mixer Module Frozen Rotor k-. Essential pressure field ...

Modelling of the Dynamical Fluorescent Micro-Thermal Imaging Experiment on the Heat Diffusion in the La5Ca9Cu24O41 Spin Ladder Compound - new

E. Khadikova[1], F. de Haan[1], P. H. M. van Loosdrecht[2]
[1]Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
[2]Department of Physics, University of Cologne, Köln, Germany

The dynamical fluorescent micro-thermal imaging (FMI) experiment has been used to investigate the phonon-magnon interaction in the 1D Heisenberg antiferromagnet La5Ca9Cu24O41. This material shows highly anisotropic heat conductivity due to the efficient magnetic heat transport along the spin ladders in the compound carried by magnetic excitations (magnons). To extract information on the phonon ...

Mathematical Model of Vacuum Foam Drying - new

M. Sramek[1], J. Weiss[2], R. Kohlus[1]
[1]Department of Food Processing Engineering, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany
[2]Department of Meat Science and Food Physics, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany

The mathematical model is closely related to the development of a novel drying method for high viscous and sticky materials. The foamed state facilitates diffusive moisture transport and therefore accelerating the drying process. Moreover the dried porous material can be easily converted into the powder. The mathematical modelling aimed at evaluating the complex drying process as basic ...

Modeling and Simulation of High Sensitivity CMOS Pressure Sensor Using Free Boundary Circular Diaphragm Embedded on Ring Channel Shaped MOSFET

S. Joy[1], T. Tom[1]
[1]Rajagiri School of Engineering and Technology, Kochi, Kerala, India

Sensors have diverse applications ranging from medical field to space explorations. They convert physical parameters such as temperature, pressure, humidity etc: - into an electrical output. The discovery of piezoresistivity property of silicon and germanium led to miniaturization of pressure sensors. Improvement in the sensitivity is the major factor to be considered while designing pressure ...

Investigation of Ion Interactions and Space Charge Effects in a Time of Flight Ion Trap Resonator

D. Bayat [1], I. Kjelberg [1], G. Spinola Durante [2], D. Schmid [3]
[1] CSEM SA, Neuchatel, Switzerland
[2] CSEM SA, Alpnach, Switzerland
[3] CSEM SA, Landquart, Switzerland

An ion trap resonator, used for mass spectrometry, is investigated. Simulations are used to define the stabilization criterion of ion trajectories by optimization of the electrode configurations. The ion interactions are investigated and shown to help in reduction of ion-diffusion. Space charge effects simulate the induced voltages on pickup electrodes.

Improvements on Cyclotron Gas Target Cooling System Using COMSOL Multiphysics® Software

F. M. Alrumayan [1], Q. Akkam [1], S. Alqaryan [1],
[1] King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

Medical Cyclotrons are used in hospitals to manufacture radiopharmaceuticals. The nuclear reaction between the Cyclotron charged particles and a material takes place inside the so-called targets. In particular, gas target is used when a specific gas is bombarded with proton particles to produce radioactive gas [1]. For successful reaction and good production yield, heat generated due to ...

Modeling of Complex Structures in Electrotechnology

Göran Eriksson
Dr., ABB Corporate Research, Sweden

Outline of presentation: In electromagnetic technology applications the finite element method is very well suited for a wide range of problem types For many cases, in particular when inhomogeneous materials having complex properties are involved as well as when multiphysics couplings are essential, it is the only option available The somewhat unfavourable performance scaling with problem ...

Modelling of SiC Chemical Vapour Infiltration Process Assisted by Microwave Heating

G. Maizza[1] and M. Longhin[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The excessive presence of residual SiC matrix inter-fiber pores is often the main cause for the very poor mechanical strength and toughness of SiC/SiC composites manufactured by CVI (Chemical Vapour Infiltration) process. This work presents a micro/macro Microwaveassisted Chemical Vapour Infiltration (MW-CVI) model as a strategy to attack the problems above. The proposed model couples a reactor ...

Measuring the Spectra of Metamaterials at an Oblique Incidence

X. Ni[1,2], Z. Liu[1,2], and A.V. Kildishev[1,2]
[1]School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
[2]Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

The emergence of electromagnetic metamaterials has given rise to a variety of fascinating applications, including the perfect lens and the optical cloaking device. For a long time the study of the properties of metamaterials was limited to normal incidence only. However, it is extremely important to know the behavior of metamaterials especially in the area of imaging. In this paper, we use ...

2721 - 2730 of 3390 First | < Previous | Next > | Last