Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design de uma Fibra de Cristal Fotônico para a Propagação de Modos com Momento Angular Orbital

F. B. Mejía [1], M. F. V. de Almeida [1],
[1] Instituto Nacional de Telecomunicações - INATEL, Santa Rita do Sapucaí, MG, Brasil

Uma das formas de se conseguir a multiplexação modal de informações em uma fibra óptica é através do uso do momento angular orbital (OAM). Neste trabalho exploramos a riqueza estrutural das fibras de cristal fotônico (PCF) para aprimorar a transmissão de modos OAM. Usamos o RF Module do software COMSOL Multiphysics para calcular os modos de propagação de uma PCF. Então, através do Livelink™ for ...

AlGaInAs/InP Hexagonal Resonator Microlasers with a Center Hole

H. Weng [1], Y. Yang [1], B. Liu [1], X. Ma [1]
[1] Institute of Semiconductors, Chinese Academy of Science, Beijing, China

In the past decades, equilateral polygonal microcavity lasers with whispering-gallery modes (WGMs) have attracted great attentions due to their potential application in photonic-integrated circuits. Compared to the perfect microdisk without deformation, the polygonal microcavities such as triangle, square, hexagonal and octagonal can easily realize the light directional emission and single mode ...

Measuring the Spectra of Metamaterials at an Oblique Incidence

X. Ni[1,2], Z. Liu[1,2], and A.V. Kildishev[1,2]
[1]School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
[2]Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

The emergence of electromagnetic metamaterials has given rise to a variety of fascinating applications, including the perfect lens and the optical cloaking device. For a long time the study of the properties of metamaterials was limited to normal incidence only. However, it is extremely important to know the behavior of metamaterials especially in the area of imaging. In this paper, we use ...

A Study of Laser Doppler Anemometer Using COMSOL Multiphysics®

I. Lancranjan[1] and C. Gavrila[2]
[1]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania
[2]Technical University of Civil Engineering Bucharest, Bucharest, Romania

Laser anemometers based on application of Doppler Effect have been developed and are used in-flight, on aircrafts for measurement of air flow parameters, mainly its speed versus the airplane. The air speed measurements are vital for safe flights. The main basic idea of Doppler techniques consists in measuring the frequency of scattered light. In this paper, we propose a study of a laser Doppler ...

The Optical Properties of a Truncated Spherical Cavity Embedded in Gold

A. Pors[1], O. Albrektsen[2], S.I. Bozhevolnyi[2], and M. Willatzen[1]
[1]Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
[2]Institute of Sensors, Signals and Electrotechnics, University of Southern Denmark, Odense, Denmark

The use of plasmonic effects to dramatically enhance the electromagnetic field near the surface of a metallic nanostructured surface has grown into a large research area in the effort to take advantage of the surface enhanced field. In this paper the electromagnetic field near a nano-sized truncated spherical cavity embedded in a gold substrate is investigated and modeled in 3D with COMSOL ...

Full-Wave Analysis of Nanoscale Optical Trapping

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

Plasmonic-based optical trapping is in its infancy and growing rapidly. Research in this area will significantly advance fundamental understanding in fields such as nanophotonics and biophotonics. Novel plasmonic trapping structures and systems can be designed and optimized using the COMSOL RF solver.   We present a study of plasmonicbased optical trapping of neutral sub-wavelength ...

Electromagnetic Analysis of Cloaking Metamaterial Structures

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

We study cylindrical and spherical shell structures that have cloaking material properties proposed by Pendry et al. We use 2D and 3D time-harmonic analysis to study the field distribution and power flow for various arrangements of these structures. We have shown that the COMSOL RF solver is well suited for the analysis of cloaking metamaterial structures If cloaking material properties can be ...

Modeling of an Optical Black Hole with True Gaussian Beam Incidence

X. Ni[1], A. Kildishev[1], E. Narimanov[1], and L. Prokopeva[2]
[1]Purdue University, West Lafayette, IN, USA
[2]Russian Academy of Sciences, Novosibirsk, Russia

We model an ideal optical black hole device in COMSOL Multiphysics as an electromagnetic scattering problem. The device is illuminated with a Gaussian beam which is focused at a fixed position in horizontal direction (x0) and different positions in vertical direction (y0). The device is modeled as a cylindrical system with a gradient-index shell and absorbing core. Using the classical paraxial ...

Fruit Optical Properties Assessment by Means of Spatially Resolved Spectroscopy

E. Madieta[1], V. Piron[2], A. Flament[1], J.P. L’Huillier[2], and E. Mehinagic[1]
[1]PRES L’UNAM, ESA, Grappe, Angers, France
[2]ENSAM Paristech, Angers, France

Since the invention of laser sources, understanding the interaction between the laser and biological tissues is a subject of great importance because of their medical applications in particular for diagnostic purposes. They recently found a growing interest in the sector of the arboriculture to check the fruits quality in a non-destructive way. In this work, we study the interaction between the ...

Finite Element Analysis of Integrated Circuit Interconnect Lines on Lossy Silicon Substrate

S. Musa[1], M. Sadiku[1], and A. Emam[2]

[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Information Systems Department, King Saud University, Riyadh, Saudi Arabia

The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on an integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using the finite element ...