See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Evaluation of Electromagnetic Heating of a Composite Material Using COMSOL Multiphysics® Software

R. B. R. Chethan[1], A. Desale [1], V. Perumal [1], V. Dhamotharan [2],
[1] Siemens technology and services private limited, Bangalore, Karnataka, India
[2] IIT Madras, Chennai, India.

Carbon fiber as filaments or as continuously reinforced composite finds application in the electronic packages, electric vehicles, and electrical machines, owing to its excellent electromagnetic (EMI) shielding and high conductivity. Carbon fiber being good conductor of electricity (in ... Read More

Simulating Survival and Insulin Secretion in Pancreatic Islet Tissue Constructs

E. Han [1], L. E. Niklason [1],
[1] Department of Biomedical Engineering, Yale University, New Haven, CT, USA

Type I diabetes results from the autoimmune destruction of pancreatic islets and is a growing and cost intensive chronic health problem throughout the world. Monitoring blood sugar levels and recurrent intervention with exogenous insulin allows many patients to lead relatively normal ... Read More

Modelling of Heat and Moisture Transport in a Corrugated Board Stack new

M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

Corrugated board is produced on a machine where the corrugated medium is glued between two flat paper surfaces, the liners. The board is cut into sheets and stored in a stack until suitable moisture content has been reached. The sheets are then cut and creased into blanks for the ... Read More

Stresses Due to Intercalation of Non-Spherical Lithium Storage Particles new

R. Purkayastha[1], R. McMeeking[2]
[1]Cambridge University, Cambridge, UK
[2]University of California, Santa Barbara, CA, USA

Due to computational considerations most models of lithium storage particles in batteries incorporate spherical particles. However most storage particles used in battery electrodes tend to be irregular in shape with sharp edges and extended aspect ratios. The change of the relative ... Read More

The Effect of Multi-Materials for Microwave Heating Uniformity

Huacheng Zhu [1], Quansheng Wang [1], Youqi Deng [1], Qian Meng [1],
[1] Sichuan University, Chengdu, China

To overcome the uneven heating during the process of microwave heating of food inside microwave oven, a geometrical model based on domestic microwave oven with a cylindrical container composed of multi-materials(with two different kinds of materials, one half is glass and the other half ... Read More

The Metal Patch Effect on the Microwave Heating Uniformity

Huacheng Zhu [1], Qian Meng [2], Quansheng Wang [2], Youqi Deng [2],
[1] Institute of Applied Electromagnetics, Sichuan University, Chengdu, China
[2] College of Physical Science and Technology, Sichuan University, Chengdu, China

Microwave heating is known for its efficiency and instantaneity. However, the non-uniformity of the microwave heating has limited the development of its application in industry. In order to solve this problem, a metal patch sticking to the turntable was proposed. During the heating ... Read More

An Approach to Modeling Vacuum Desorption new

C. F. Gomez[1], R. Schunk[1], R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The objective of this simulation effort is to develop a mathematical model of vacuum desorption on a POC (Proof of Concept) canister loaded with Zeolite 13X/5A . This canister contains a pelletized adsorption bed which is used to adsorb H2O and CO2. Once this bed is fully saturated with ... Read More

Numerical Evidence of Unrest-Related Electromagnetic Effects in the Campi Flegrei Caldera, Italy

G. Perillo [1], G. De Natale [2], M. G. Di Giuseppe [2], A. Troiano [2], C. Troise [2],
[1] University of Naples Parthenope, Naples, Italy
[2] INGV – Osservatorio Vesuviano, Naples, Italy

Electric, magnetic and electromagnetic (em) methods are widely used to monitor active volcanoes. A review of such applications is presented in Johnston (cit). Em signals were recorded in correspondence of numerous volcanic eruptions, for example in the case of the Mt. Unzen in Giapppone, ... Read More

Use of COMSOL Multiphysics® Software for Physics Laboratory Exercises

H. van Halewijn [1],
[1] Fontys Hogeschool, Applied Physics, Eindhoven, Netherlands

COMSOL Multiphysics® is used to simulate thermal flow experiments at out University for Applied Physics. Students have to measure thermal flow problems and verify the measurements with detailed simulations. The desired accuracy is 5% or less. The presentation will cover 3 laboratory ... Read More

Simulation of Magnetically Driven Peristaltic Pumps for Microfluidic Applications

L. Gritter [1], J. Crompton [1], K. Koppenhoefer [1], P. Nath [2]
[1] AltaSim Technologies, Columbus, OH, USA
[2] Applied Modern Physics, Los Alamos National Lab, Los Alamos, NM, USA

Microfluidic technologies can enable laboratory processes to be packaged in miniaturized and automated systems, allowing these processes to be performed with hand-held devices outside a laboratory environment. The practical usefulness of these “lab on a chip” systems has often been ... Read More