Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Coupled RF Thermal Analysis of High Power Couplers for Accelerator Cavities

R. Kumar[1], P. Singh[1]
[1]Bhabha Atomic Research Center, Trombay, Mumbai, India

High-power couplers working at 350 MHz for particle accelerator cavities are presently under development in the LEHIPA project at BARC. It is important to analyze RF losses on conducting surfaces and resulting thermal profiles. COMSOL Multiphysics® is used to study these coupled RF-thermal effects and estimate cooling requirements for these couplers. The RF loss on the copper conductors and ...

Heat Transfer Modelling of Single High Temperature Polymer Electrolyte Fuel Cell (HT PEFC) Using COMSOL Multiphysics®

V. Venkataraman[1]
[1]Centre for Hydrogen & Fuel Cell Research, University of Birmingham, United Kingdom

In this paper a 3D geometry of a single HT PEFC with all the components (membrane, cathode, anode & bipolar plate with flow field) was modelled for heat transfer. The source of heat within the fuel cell is the internal heat generated from electrochemical reactions. Heat source terms used in the model are: Joule Heat - Occurs in membrane and modelled as Volumetric heat source Irreversible ...

A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning

G. Cammarata, and G. Petrone
Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

In this study fluid-dynamical and thermal performance of active chilled beams is investigated by 2D and 3D modelling in COMSOL Multiphysics. Three different typologies of those air conditioning systems are considered. Results, obtained for typical range of variation of operational conditions, are principally produced as temperature and velocity distributions. Special attention is paid to the ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...

Multiphysics Process Simulation of the Electromagnetic-Supported High Power Laser Beam Welding of Austenitic Stainless Steel

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The application of an oscillating magnetic field on the high-power full-penetration laser beam welding process of a 20 mm thick stainless steel plate was numerically and experimentally investigated. In the simulations, three-dimensional heat transfer and fluid dynamics as well as electromagnetics were solved taking into account the most important physical effects of the process, namely the ...

Modeling Melting Profiles in Chocolate Pieces for Optimizing their Sensory Properties

B. Watzke[1], F. Lenfant[1], N. Martin[1]
[1]Nestlé research Centre, Vers-chez-les-Blanc, Switzerland

Chocolate is a pleasurable product largely consumed over the world. It is known that ingredients, process and particle size distribution largely impact the chocolate sensory perceptions. It was hypothesized that a suitable choice of chocolate size and geometry modifies in-mouth melting and aroma release and modulates flavour and oral texture perception. Since in-vivo experiments on chocolate ...

Simulated Rheometry of a Nonlinear Viscoelastic Fluid

A. Czirják[1], Z. Kőkuti[1], G. Tóth-Molnár[1], P. Ailer[2], L. Palkovics[2], G. Szabó[1]
[1]University of Szeged, Szeged, Hungary
[2]Kecskemét College, Kecskemét, Hungary

In certain cases, the accuracy of measurements with a rotational rheometer can be influenced by inefficient thermal management, by the heat generated in the sample, or by rod-climbing due to the Weissenberg effect. We investigate the effect of these phenomena with simulations in COMSOL Multiphysics®. Our model is based on the axial symmetric (2D) formulation of the two-phase flow with the ...

Multiphysics Modeling of a Grain Storage Chamber - new

P. Guha[1], P. Sharma[1], V. Malhotra[1], S. Mishra[1]
[1]CSIR - Central Scientific Instruments Organisation, Chandigarh, India

Proper storage of grains depends on minimizing attacks of insects, fungi, mites, etc. Development of such pests can be controlled by controlling the temperature of the storage chamber. Hence, before designing grain storage chambers, mathematical modeling and numerical simulations should be performed to predict the temperature distributions. Changes in storage temperature may occur due to several ...

Thermal Simulation of FCBGA Package with Heat Sink

M. R. Naik[1]
[1]Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

In a modern IC design, the capability of predicting the temperature profile is critically important as well as cooling and related thermal problems are the principal challenges. To address these challenges, thermal analysis must be embedded within IC synthesis. This paper presents thermal analysis of the FCBGA chip with a 4mm×4mm×0.3mm silicon die. The silicon die dissipates heat flux of ...

3-Dimensional Numerical Modeling of Radio Frequency Selective Heating of Insects In Soybeans

S. Wang [1], Z. Huang [1],
[1] Northwest A&F University, Yangling, Shaanxi, China

Radio frequency (RF) heating have potential as alternatives to chemical fumigation for disinfesting legumes. This study was conducted to investigate the feasibility of RF selective heating of insect larvae in 3 kg soybeans packed in a rectangular plastic container using a 6 kW, 27.12 MHz RF heating system. A finite element based computer simulation program-COMSOL Multiphysics® was used to solve ...