Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation Of Soil Remediation Polluted By Hydrocarbons Using A Non-Thermal Atmospheric Plasma

J. Rojo, S. Ognier, and S. Cavadias
Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, University Pierre et Marie Curie, Paris, France

A lot of techniques are developed to treat soils polluted by hydrocarbons pollutants: incineration, thermal treatment, extraction, chemical oxidation, bioremediation… Some of these techniques are very energy consuming (incineration, thermal treatment…) and often need a subsequent treatment of the generated gases or liquids. Of all the decontamination methods, bioremediation appears to be the ...

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Underground Coal Fire Extinction Model Using Coupled Reactive Heat and Mass Transfer Model in Porous Media

S. Suhendra[1], M. Schmidt[1], and U. Krause[1]
[1]Laboratory II.2: “Flammable Bulk Materials and Dusts, Solid Fuels”, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Green house gases emission associated with natural hazard of underground coal seam fire has been recognized as a worldwide problem leading to global warming threat. Therefore, in this paper a model to study underground coal fire is presented and the results will be devoted to strategic development of coal fire extinction technology within the framework of Sino-German Coal Fire Research ...

Three Dimensional Bioventing Model

Barakat, E.A., Zytner, R.G.
School of Engineering, University of Guelph, Guelph, Ontario, Canada

Bioventing (BV) is a popular in situ technology for the treatment of petroleum hydrocarbon contaminated soil. Generally, the process involves the stimulation of the native microorganisms by adding nutrients and oxygen to the contaminated soil in the vadose zone. BV can address tailing, where ineffective treatment through mass transfer limitations keeps the contamination level above the regulatory ...

Modeling Soil Water Dynamics with Time-Variable Soil Hydraulic Properties

A. Schwen[1], G. Bodner[2], A. Schnepf[3], D. Leitner[3], G. Kammerer[1], and W. Loiskandl[1]

[1]Institute of Hydraulics and Rural Water Management, Univ. Natural Resour. Appl. Life Sci., BOKU, Wien, Austria
[2]Institute of Agronomy and Plant Breeding, Univ. Natural Resour. Appl. Life Sci., BOKU, Wien, Austria
[3]Institute of Soil Science, Univ. Natural Resour. Appl. Life Sci., BOKU, Wien, Austria

Modeling soil water dynamics requires an accurate description of soil hydraulic properties, i.e. the retention and hydraulic conductivity functions. Generally, these functions are assumed to be unchanged over time in most simulation studies. In this paper, we implemented temporal changes in the soil hydraulic properties in a Richards’ equation simulation of soil water dynamics. Based on ...

Modelling AVO signals from laboratory acoustics and seismic (MASLAS)

R. Limacher, R. McHugh, and R. Westerman
Heriot Watt University, Edinburgh, Scotland

The Amplitude vs. Offset (AVO) technique infers the elastic properties of geological targets from pre-stack seismic data. AVO analysis significantly reduces the drilling risks for oil and gas exploration and development, particularly in the Gulf of Mexico. One strand of the current, EC-funded ADEMA Project is to evaluate AVO in coal-bearing strata. The target application areas are long-wall ...

The Effect of the Disintegration of Chemical Stratification on the Time-dependent Behavior of the Earth’s Mantle

A. Galsa, and M. Herein
Eötvös University
Budapest, Hungary

Based on recent results from seismology, geochemistry etc. the distinct chemical character of the D’’ layer (lowest part of the mantle around the Earth’s core) has appeared unequivocally. Numerical calculations have been carried out to investigate the effect of the disintegration, mixing and homogenization of the dense D’’ on the time-dependent behavior of mantle convection. A ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Building a Complex Geological Model Using Parametric Surfaces

S. Hoyer[1], M. Bottig[1], F. Zekiri[1], G. Götzl[1], A.K. Brüstle[1], G. Schubert[1], A. Nador[2]
[1]Geological survey of Austria, Vienna, Austria
[2]Geological Institute of Hungary, Budapest, Hungary

Temperature measurements of the subsurface are available due to hydrocarbon exploration in the project area, where the average drilling depth is about 2-4 km and the deepest well reaches about 8.5 km. Since the data is heavily uneven distributed, standard interpolation techniques did not deliver satisfying results. This is why numerical modeling was applied to assess the thermal regime of the ...

Application of Numerical Simulation in Geotechnical Engineering

Dr. Meen-Wah Gui[1]
[1]Department of Civil Engineering, National Taipei University of Technology, Taipei, Taiwan

In this work, COMSOL Multiphysics was used to develop a model to investigate the degree of saturation in sloped terrain. The model was validated via laboratory experiments incorporating Lan’s man-made rainfall slope model test. The validated model was used in an actual case study to simulate the Maokong Landslide.

Quick Search