See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Computational Fluid Dynamicsx

Two-Phase Modeling of Gravity Drainage of Bitumen from Tar Sand Using In-Situ RF Electrical Heating

A. Hassanzadeh
Pyrophase Inc., Chicago, IL, USA

In-situ electrical heating technologies are among the most recent technologies used for bitumen recovery from tar sand and oil shale. These technologies have limited environmental impact because there is little disturbance of the land, and water and solvents are not used. Two-phase ... Read More

Validation of DNS Techniques for Dynamic Combined Indoor Air and Constructions Simulations Using an Experimental Scale Model

T. van Goch, and A. van Schijndel
Eindhoven University of Technology, Eindhoven, Netherlands

This paper presents a study on the application of Direct Numerical Solving (DNS) techniques using an experimental scale model. COMSOL Multiphysics is promising in solving dynamic heat and air transport. The experiments can be extremely useful as benchmark for CFD codes. Read More

COMSOL Grab Bag: How to Use a Versatile CFD Code to Model Interesting Problems from Cryogenic Storage to Biofuel Production

Emily Nelson
Senior Research Engineer,
NASA Glenn Research Center, Cleveland, OH, USA

Emily Nelson received her PhD in Mechanical Engineering from the University of California at Berkeley. She is a senior research engineer at NASA Glenn Research Center and specializes in the formulation and solution of problems in microgravity science, multiphase flow, porous media, risk ... Read More

In-Situ Detection of Inclusions in Liquid Steel

X. Wang, R. Guthrie, and M. Isac
McGill Metals Processing Centre, Montreal, Canada.

A numerical multiphase flow model is proposed to predict the behavior and motion of entrained inclusions in liquid steel, as they enter the orifice of a LiMCA (Liquid Metal Cleanliness Analyzer) sensor for assuring steel quality. The method of measurement is based on the electric sensing ... Read More

Simulations of Micropumps Based on Tilted Flexible Structures new

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC, Needham, MA, USA
[2]The Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible ... Read More

Mathematical Modeling of Drug Transport in Brain Tumors new

Y. Guo [1], M. O. Bernabeu [2], C. D. Arvanitis [1],
[1] Georgia Institute of Technology, Atlanta, GA, USA
[2] University of Edinburgh, Edinburgh, United Kingdom

Blood-brain and blood-tumor barriers (BBB and BTB) constitute a major obstacle to the transport of therapeutics in brain tumors. Focused ultrasound (FUS), when combined with circulating microbubbles, provides a noninvasive method to locally and transiently disrupt the BBB/BTB. ... Read More

Modeling the Swirling Flow of a Hydrocyclone new

B. Chine' [1], F. Concha [2], M. Meneses [3],
[1] Costa Rica Institute of Technology, School of Materials Science and Engineering, Cartago, Costa Rica
[2] Departamento de Ingeniería Metalúrgica, Universidad de Concepción, Concepción, Chile
[3] Costa Rica Institute of Technology, School of Industrial Production Engineering, Cartago, Costa Rica

Hydrocyclones are industrial devices used as processing units in fluid and particle technology. A hydrocyclone is an apparatus consisting of a cylindrical or a cylindrical-conical body with a tangential or involute entrance to admit the fluid inside. There are also two opposite exits, ... Read More

Elucidating the Mechanisms of Charge and Temperature Modulated Ionic Transport in Nanochannels new

G. Zhang [1], Y. Zhao [1],
[1] Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA

The transport of fluid through nanochannels is of importance in a variety of technological applications, including biological sensing, energy storage and conversion, chemical separation and many others. Synthetic nanofluidic architectures that mimic the gating functions of biological ion ... Read More

Numerical Study of the Gas-Powder Flow from Coaxial Nozzles in Laser Metal Deposition new

E. Ferreira [1], M. Dal [1], P. Peyre [1], C. Colin [2], G. Marion [3], D. Courapied [3], B. Macquaire [3],
[1] PIMM Laboratory, UMR 8006 ENSAM – CNRS – CNAM, Paris, France
[2] Centre des Matériaux, UMR 7633 MINES Paris Tech, Evry, France
[3] Safran, Paris, France

The Laser Metal Deposition process (LMD) is a rapid free form fabrication method which can be used to manufacture new near net shape metallic components, to repair used ones or to add functional parts on existing ones. This process is composed by multiple gas streams flowing inside a ... Read More

Transient Modeling of a Fluorine Electrolysis Cell Using COMSOL Multiphysics® new

E. Oosthuizen [1], P. L. Crouse [1],
[1] University of Pretoria, Pretoria, South Africa

The design of the commercial fluorine electrolysis cells in operation in South Africa is based on technology dating essentially from the era before the proliferation of computer simulation software. The model reported here was initiated to generate a more fundamental understanding of ... Read More