See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Computational Fluid Dynamicsx

Rheological Behaviour of Single–Phase Non-Newtonian Polymer Solution in Complex Pore Geometry: A Simulation Approach

P. Idahosa[1], G. Oluyemi[2], R. Prabhu[2], B. Oyeneyin[2]
[1]IDEAS Research Institute/School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.
[2]School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.

One of the most important criteria for evaluating chemical enhanced oil recovery (EOR) processes that use polymers is its rheological behaviour which in turn account for other physical effects of adsorption and resistance factors during polymer-rock interactions. However, complete ... Read More

Design of High Performance Micromixer for Lab-On-Chip (LOC) Applications

K. Karthikeyan[1] , L. Sujatha[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

This paper presents the design and simulation of micromixer for Lab-On-Chip (LOC) applications. There are two types of micromixers: one is an active micromixer and another one is a passive micromixer. This paper investigates microfluidic flow characterization and mixing rate of two ... Read More

Computational Fluid Dynamics (CFD) Simulation of Multiphase Flow in Biogas Digester

V. S. Kshirsagar[1], P. M. Pawar[1]
[1]SVERI's College of Engineering, Pandharpur, Maharashtra, India

Effective suspension and settling are critical for controlling biomass retention in a biogas digester. This paper developed a Computational Fluid Dynamics (CFD) model to simulate the hydrodynamic characteristics of multiphase flow in biogas digester. This is carried out by using COMSOL ... Read More

Trapping DNA Molecules in Fluids Using Electrokinetic Effects Generated by Different Electrode Geometries

S. Ghonge[1], S. Kapur [1], S. Banerjee[1]
[1]Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, Telangana, India

In this paper we present results of simulations done to predict the behavior of a system consisting of DNA molecules in an aqueous medium under the combined effect of AC Electroosmosis and Dielectrophoresis (DEP). ACEO is caused by the movement of fluid particles under the influence of ... Read More

Early Breast Cancer Detection using Patient Symptomatic Breast Images by Finite Element Analysis Aided by COMSOL

Tan Ming Sien[1]
Devendran Perumal[1]
Sri Pooveyninthran[1]
Samavedham Lakshminarayanan[2]
Balu Ranganathan[3]

[1]Department of Chemical and Natural Resources Engineering, University of Malaysia Pahang, Pahang, Malaysia
[2]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
[3]Center for Excellence for Fluid Flow Research, University of Malaysia Pahang, Pahang, Malaysia

In this project, we attempted to determine the drug concentration in a breast cancer tumor after a drug has been delivered. We created a COMSOL Multiphysics® finite element model. We investigated the relationship between drug delivery efficiency and parameters such as diffusivity, ... Read More

CFD Analysis of Ejectors

Vikas N Bhargav[1], Vivek Ganeshan[1], Muralidhara Holla[1], Ramesh Kolluru[1]
[1]Mechanical Engineering Department, BMS College of Engineering, Bangalore, India

Ejectors are the devices used to carry out mixing and recompression of two fluid streams, one with higher energy and the other with lower Energy. The high energy fluid is passed through the converging nozzle of ejector to very high velocities which in turn creates suction and draws the ... Read More

Low Reynolds Number Flow Around a Flying Saucer Micro Air Vehicle

S. Cortés[1], D. Güemes[1], R. Ávila[1]
[1]Universidad Nacional Autónoma de México, Mexico City, Mexico

The study of low Reynolds number flow around air vehicles of the order of centimeters. According to DARPA, a NAV is defined as a vehicle with 7.5 cm of length and weight of 20 grams. We calculated the flow around a small length scale 3D rigid body with complex geometry. Firstly we ... Read More

Models with Helical Symmetry Studied in a 2D Plane

M. Weterings[1], M. Beyrer[1]
[1]Institute of Life Sciences HesSo Valais, Sion, Valais, Switzerland

Partial differential equations (PDEs) in multiple dimensions may often be solved in a lower dimension if the problem domain contains a symmetry (cylindrical, spherical, translational, etcetera). For problems involving PDEs with helical symmetry we propose a method, with both low ... Read More

Numerical Simulation of the Effect of Inlet Design on Thermal Storage Tank Performance Using COMSOL Multiphysics®

W. Yaïci[1], M. Ghorab[1], E. Entchev[1]
[1]Natural Resources Canada, CanmetENERGY, Ottawa, ON, Canada

This study presented the results of 3D unsteady CFD simulations to investigate the influence of adding a flat baffle plate at the entrance during the discharging operation on the flow behaviour, thermal stratification, and performance of a hot water storage tank installed in solar ... Read More

Modeling Maillard Reaction and Thermal Transformations During Bread Baking

D. Papasidero[1], F. Manenti[1]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Milano, Italy

One big challenge for the food industry is to predict and optimize flavors. The Maillard reaction occurs in food matrices containing carbohydrates and proteins under specific operating conditions. The presented research couples thermal and kinetic modeling to the bread baking process, ... Read More