Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Trapping DNA Molecules in Fluids Using Electrokinetic Effects Generated by Different Electrode Geometries

S. Ghonge[1], S. Kapur [1], S. Banerjee[1]
[1]Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, Telangana, India

In this paper we present results of simulations done to predict the behavior of a system consisting of DNA molecules in an aqueous medium under the combined effect of AC Electroosmosis and Dielectrophoresis (DEP). ACEO is caused by the movement of fluid particles under the influence of the electric field. DEP is caused by polarization of the DNA particle. Two different electrode geometries ...

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

A. Travis[1], K. Ekici[1], J. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model’s domain consists of a three-dimensional fuel plate and a two-dimensional coolant channel slice. In simplifying the coolant channel, the computational cost and solution time are both ...

Early Breast Cancer Detection using Patient Symptomatic Breast Images by Finite Element Analysis Aided by COMSOL

Tan Ming Sien[1]
Devendran Perumal[1]
Sri Pooveyninthran[1]
Samavedham Lakshminarayanan[2]
Balu Ranganathan[3]

[1]Department of Chemical and Natural Resources Engineering, University of Malaysia Pahang, Pahang, Malaysia
[2]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
[3]Center for Excellence for Fluid Flow Research, University of Malaysia Pahang, Pahang, Malaysia

In this project, we attempted to determine the drug concentration in a breast cancer tumor after a drug has been delivered. We created a COMSOL Multiphysics® finite element model. We investigated the relationship between drug delivery efficiency and parameters such as diffusivity, deepness of the tumor, and the temporal and spatial placement of the transdermal patch that delivers the drug. We ...

Change in the Flow Rate Through a Deformed Valve

D. Kekejian[1], Y. Martinez[1]
[1]ITESO, Tlaquepaque, Jalisco, Mexico

In this work, a new design is suggested which functions both as a pipe for fluid transfer and as a valve which decreases the flow of the fluid in the opposite direction in case there are pressure fluctuations in the pipe. Therefore, we call it a "Deformed Valve". To design the structure, we had to use different geometric shapes and calculate the velocity of the fluid for each shape to determine ...

Efficient Heat Management Technique for Electronic Display Device

U. Shukla[1], and D. Gupta[1]
[1] Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India

One of the major challenges faced by the semiconductor industry is that electronic circuits produce a lot of heat energy during their operation. And with the current scenario where the gates are packed so much close together, then the problem of heat generation has become extremely significant. So we are working towards the efficient heat management and dissipation solution for the heat ...

Modelling and Simulation of a Three-stage Air Compressor Based on Dry Piston Technology

M. Heidari, and P. Barrade
EPFL
Lausanne, Switzerland

The core of this modelling is to study heat transfer and fluid dynamics processes for a compression expansion system, and the main particularity is that heat transfer and air movement are due to the movement of the piston. We have implemented a \"moving mesh\" solver to compute the volume changes of the compression chamber followed by a \"Fluid dynamics\" type solver. It allows correct ...

Low Pt Cathodes for High Performance PEMFCs: Modeling and Experiments

F. Daouda[1], J. Hamelin[1], P. Benard[1], S. Kumar Natarajan [1]
[1]Insitut de recherche sur l'hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada

We present a novel multi-layered electrode fabrication technique for polymer electrolyte membrane fuel cells (PEMFCs). This method consists of alternate layers of Pt deposition (0.05 mg/cm²) by sputtering on the painted multi-walled carbon-Nafion layer (CNL) with larger concentration of catalyst particles closer to the membrane. Parametric models were developed and validated by experimental ...

FEM Analysis of Contaminant Transport in a Loamy Desert Soil

B. Agasanapura, C. Nesbitt, and M. Misra
Chemical and Metallurgical Engineering, University of Nevada, Reno, Nevada, USA

In the present work, transport and adsorption of contaminants (lead, cesium) on loamy desert soil was modeled using the Finite Element Method (FEM). The Advective dispersion reaction mechanism was employed to describe the contaminant transport in soil medium. A partial differential equation (PDE) obtained from unsteady mass balance was developed using convective diffusion, solute adsorption, and ...

A CFD Analysis of the Operating Conditions of a Multitube Pd Membrane for H2 Purification - new

B. Castro-Dominguez[1], R. Ma[1], A. G. Dixon[1], Y. H. Ma[1]
[1]Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA

The optimization of operating conditions in multitube membrane modules is highly complex. The multiple physics and irregular geometries involved create a challenge for predicting their behavior. This work analyzes the performance of H2 purification through a module containing seven membranes. Using experimental parameters, a 3-D model was devised, specifying the membrane as a reacting boundary ...

Numerical Simulation of Carbon Steel Corrosion Exposed to Flowing NaCl Solutions Through an Annular Duct - new

A. Soliz[1], K. Mayrhofer[1], L. Caceres[2]
[1]Department of Interface Chemistry & Surface Engineering, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
[2]Department of Chemical Engineering, University of Antofagasta, Antofagasta, Chile

A three-dimensional mathematical model under stationary conditions have been established to understand the corrosion of carbon steel cylindrical samples immersed in flowing NaCl solution through an annular duct. The migration, diffusion and convection mass transfer mechanisms were solved using the Nernst–Planck equation coupled to the Navier-Stokes equation. A corrosion model based on the mixed ...