See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Computational Fluid Dynamicsx

Modelling of a Single Cardiomyocyte Interaction with a Microcantilever Using COMSOL Multiphysics®

I. Banerjee[1]
[1]Tampere University of Technology, Tampere, Finland

: One of the most commonly used techniques for quantification of beating forces exerted by cardiomyocytes is culturing them on a bed of vertical microcantilevers or microposts. The position of the microcantilevers is observed through advanced imaging techniques and the displacements are ... Read More

Copper Electrochemical Polishing Optimisation

A. Pérez Rodríguez [1], L. Marques Antunes Ferreira [1],
[1] CERN, Geneva, Switzerland

A new electrochemical polishing facility will be built at CERN to process copper radiofrequency structures and this in the framework of the Future Circular Collider study. This polishing installation will be designed and assembled so that the necessary working conditions to achieve the ... Read More

Impact of Electro-Convection (EC) on Heat Transfer in Liquid-Filled Containers

A. Pokryvailo [1],
[1] Spellman High Voltage Electronics Corporation, Hauppauge, NY, USA

Electric field can bring liquid in motion and thus influence heat transfer. Electro-convection (EC) can be caused by electric forces acting on a liquid, even in absence of space charge. Here, we studied heat transfer in a metal vessel filled by oil, with a submersed high voltage ... Read More

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ... Read More

Delamination of Sub-Crustal Lithosphere new

P. Vincent[1], E. Humphreys[2]
[1]College of Earth, Ocean, & Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
[2]Department of Geological Sciences, University of Oregon, Eugene, OR, USA

Introduction: Lithospheric delamination beneath the western U.S. is believed to be the driving mechanism responsible for the evolution of magmatic and topographic features observed at the surface in the western U.S.. This process requires hot asthenosphere to be in contact with the ... Read More

A Research of Electro-thermal Coupling Model for Lithium-ion Battery with Multiphysics in COMSOL Multiphysics®

戴海峰 [1], 许阳 [1], 朱建功 [1],
[1] 同济大学,上海,中国

A new method is proposed to study battery thermal behavior under nature convection condition, especially focusing on temperature rising and inhomogeneity of battery. Using porous electrode theory, an electrochemical and homogenization heat source thermal coupling model and an ... Read More

Numerical Simulations of a Subsonic/Supersonic Coaxial Jet for an Efficient Design of Experimental Setup new

D. Guariglia[1], C. Schram[1]
[1]von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium

The flow field of a coaxial jet with the internal (primary) flow being subsonic and the external (secondary) flow being supersonic has been investigated with COMSOL Multiphysics® software. We used the results to correct defects in the nozzle geometry and we evaluated the effect of heat ... Read More

Determination and Verification of the Forchheimer Coefficients for Ceramic Foam Filters using COMSOL CFD Modeling

M.W. Kennedy[1], K. Zhang[1], J.A. Bakken[1], R.E. Aune[1]
[1]Norwegian University of Science and Technology, Trondheim, Norway

Experiments have been conducted with water at velocities from ~0.015-0.77 m/s to determine the permeability of 50 mm thick commercially available 30, 40, 50 and 80 Pores Per Inch (PPI) Ceramic Foam Filters (CFF) used for liquid metal filtration. Measurements were made using two different ... Read More

Modeling of Expanding Metal Foams new

B. Chinè[1,2], M. Monno[3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications. They are characterized by a cellular structure represented by a metal or metal alloy and gas voids inside (Fig.1). A common metallic cellular material is aluminum foam which can be produced metallurgically by heating ... Read More

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly new

R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics ... Read More