Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Analysis of the Effect of Surface Active Elements on Marangoni Flow in a Melt Pool

K. Yadav [1], A. Mishra [1],
[1] IIT Kanpur, Kanpur, Uttar Pradesh, India

Marangoni flow affects the heat and mass transfer occurring in the molten metal regions in welding and additive manufacturing processes. It originates from the surface tension gradient (∂γ/∂T) induced at the melt pool surface due to the temperature difference. The flow pattern within melt pool affects the segregation and melt-pool shape and size. The flow pattern and therefore the melt pool ...

Entropic Evaluation of Dean Flow Micromixers

P. S. Fodor[1], M. Kaufman[1]
[1]Cleveland State University, Cleveland, OH, USA

In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL Multiphysics, the CFD Module, and the Chemical Species Transport physics. In this system, the centrifugal forces experienced by the fluid as it travels along the curved trajectory induce counter-rotating flows. The presence of these transversal ...

Simulation of the Flow of an Autonomous Spherical Ball inside a Pipeline

W. Chalgham [1], A. C. Seibi [1], M. Mokhtari [1],
[1] University of Louisiana at Lafayette, Lafayette, LA, USA

One of the limitations of pipelines performance and structural integrity assessment is the continuous inspection of possible leaks due to corrosion or other types of failure mechanisms. Efforts to develop new technologies started several decades ago where different inspection techniques were used to enhance pipelines structural integrity. However, although available technologies present some ...

Cooling Study of Baffles Integration in the Molding Industry

B. Noailles [1] , S. Meunier [1], V. Bruyere [2]
[1] RocTool, Savoie Technolac, Module R, France
[2] SIMTEC, France

In the molding industry, high productivity rate, low energy consumption, large 3D parts, and homogeneous temperature distribution are the main targets. The 3iTech® inductive technology developed by RocTool ensures both good temperature homogeneity and short heating time. Conventionally, to guarantee efficient cooling, a turbulent water flow is directly integrated into the mold. Ideally, to cope ...

Hydrodynamics and Mass Transfer in Taylor Flow

F. L. Durán Martínez [1], A. M. Billet [1], C. Julcour-Lebigue [1], F. Larachi [2],
[1] Toulouse University, Toulouse, France
[2] Laval University, Quebec, Canada

In the present work, numerical simulations of a Monolith Reactor (MR) are carried out in order to develop a pre-design tool for industrial-scale reactors applied to highly exothermal reactions. The reacting circular channels (2-4 mm internal diameter) are coated with a few micron thick catalytic layer (washcoat), and host a gas-liquid segmented flow (the so-called Taylor flow) known to enhance ...

Natural Refrigeration System Design

A. Prasad [1], O. K. Sacks [1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, India

This paper deals with the numerical experiments for early prediction of muffler performance at the design stage. In this experiment a Reactive Muffler is developed and validated numerically compared to traditional built and test process.

Acoustic Scattering through a Circular Orifice in Low Mach Number Flow

S. Sack [1], M. Abom [1]
[1] KTH, the Royal Institute of Technology, Stockholm, Sweden

The acoustic scattering through a circular orifice plate in a duct with low Mach number flow (M=0.1) is computed using the Linearized Navier-Stokes physics interface of COMSOL Multiphysics®. The work by Kierkegaard et al. is extended to account for higher order acoustic modes, i.e., behind the cut-on frequency of the first radial duct mode. Orifice flows tend to create a sharp separation zone at ...

Modal Analysis of Elastic Ring Squeeze Film Damper for Small Gas Turbine Engines

S. Thennavarajan[1][2], P. Jeyaraj [1], L. P. Manikandan [2], S. S. Kulkarni [2], S. Jana [2],
[1]Department of Mechanical Engineering, NITK, Surathkal, Mangalore, Karnataka, India
[2]CSIR- National Aerospace Laboratories, Bengalore, Karnataka, India

The high speed gas turbine is a power plant developed for modern aircrafts. It is widely used and developed because it can meet the high power to weight ratio. The rotor system of modern small gas turbine works above the critical speeds. Hence, there is a stricter requirement for the control and isolation of vibration magnitude under heavy unbalance load and passing through critical speeds. An ...

Simulation of Mass Transfer in a Microfluidic Experiment Using the Moving Mesh Method - new

K. Weisbrod[1], R. Roberts[1], R. Chamberlin[1], S. Yarbro[1]
[1]Los Alamos National Lab, Los Alamos, NM, USA

Multiphase flow in a microreactor was studied numerically for two immiscible liquids. Validation of the model was sought by simulating the flow behavior and mass transfer characteristics of a neutralization reaction described in the literature. Contact angles, interfacial tension and the pressure field defined the interfacial boundary configuration. After first performing simulations to capture ...

Studying Magnetohydrodynamic Effects in Liquid Metal Flow Under Transverse Magnetic Field Using COMSOL Multiphysics®

S. Sahu[1], R. Bhattacharyay[1], E. Rajendrakumar[1]
[1]Institute for Plasma Research, Bhat, Gandhinagar, India

Liquid metals are foreseen as a multipurpose coolant in fusion blanket systems. However, the strongly magnetic environment of the fusion reactor hinders the regular flow of the liquid metal. It interacts with transverse magnetic field and produces a Lorentz force opposing the flow, modifying the regular flow profile in the circular pipe or rectangular ducts. Complex geometry and lack of ...