Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Supercritical Fluid Extraction Process

P. Katiyar [1], S. Khanam [1],
[1] Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

This paper deals with the simulation of mathematical model for supercritical extraction. Reverchon, 1996 extracted sage oil using supercritical extraction method from sage leaves at 9 MPa and 50 ᵒC. Four mean size of sage leaves ranging from 0.25 to 3.10 mm were taken for extraction with other experimental conditions and process parameters. Experimental results were fitted in the model developed ...

Understanding the Magnetic Field Penetration in Mesoscopic Superconductors via COMSOL Multiphysics® Software - new

I. G. de Oliveira[1]
[1]Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Introduction: One of the main characteristic of the superconductors is its diamagnetic response of applied magnetic fields. The superconductors refuse the penetration of magnetic field into its interior, it is the well know Meissner effect, B=0 into the superconductor sample. However when the applied field reach a determined value, the magnetic field can enter. There are two different ways of ...

A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

R. Coker [1], J. Knox [1],
[1] NASA Marshall Space Flight Center, Huntsville, AL, USA

Introduction: Developments intended to improve system efficiency and reliability for water and carbon dioxide separation systems to be used on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of simulations in COMSOL Multiphysics® software in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration ...

Pneumo-Hydrodynamic Droplet Generation

V. Mamet [1], P. Namy [2], N. Berri [1], L. Tatoulian [1], P. Ehouarn [1], V. Briday [1], P. Clemenceau [2], B. Dupont [1]
[1] DBV Technologies, Bagneux, France
[2] SIMTEC, Grenoble, France

Introduction Droplet-based microfluidics is a large source of research for scientists of new biotechnologies, aerosols or other 2D-Microfluidics devices. Here, we will focus on an industrial application of a 3D microfluidic device : the PH2DG, Pneumo-HydroDynamic Droplet Generator. The aim of the process is to produce mono-disperse, regular pattern of droplets, with a minimum size. To use it in ...

Implicit LES for Two-Dimensional Circular Cylinder Flow by Using COMSOL Multiphysics® Software - new

M. Hashiguchi[1]
[1]Keisoku Engineering System Co.,Ltd., Tokyo, Japan

In this paper, implicit Large Eddy Simulation (LES) based on finite-element analysis is performed in order to investigate two-dimensional circular cylinder incompressible flow. Implicit LES attempts time-dependent flow computation with no explicit turbulence model. Here, two types of circular cylinder with/without surface roughness, are treated. The Reynolds number Re based of the diameter of ...

Modeling of Non-isothermal Reacting Flow in Fluidized Bed Reactors

V. Orava [1], O. Souček [2], P. Cendula [1]
[1] Institute of Computational Physics, ZHAW, Winterthur, Switzerland
[2] Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

We investigate a prototype concept of a back-up electricity device where we use liquid formic acid (FA) to produce a mixture of carbon dioxide (CO2) and hydrogen (H2) which is used in a PEM fuel cell, Fig. 1. In the fluidized bed reactor the liquid FA is decomposed to a gaseous mixture of CO2 and H2 in the presence of microscopic floating solid catalytic particles. We describe the system, ...

In Silico Evaluation of Local Hemodynamics Following Vena Cava Filter Deployment

J. Ferdous[1], M. Ghaly [2], V. B. Kolachalama [3], T. Shazly[1,4]
[1]Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
[2]Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
[3]Charles Stark Draper Laboratory, Cambridge, MA, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Inferior vena cava (IVC) filters have become essential components in deep vein thrombosis treatment to prevent preventing pulmonary embolisms. Filter efficacy relies on maintaining IVC patency by preventing filter-induced thrombosis following clot capture. A computational model has been developed to determine whether a candidate filter design elicits hemodynamic patterns that promote thrombus ...

Comparing Different Approaches for Moisture Transfer Inside Constructions with Air Gaps

L. Nespoli[1], M. Bianchi Janetti[2], F. Ochs[2]
[1]Politecnico di Milano, Milan, Italy
[2]University of Innsbruck, Innsbruck, Austria

A model for the conjugate simulation of heat and moisture transfer inside porous materials and fluid domains is implemented in COMSOL Multiphysics®. The results of this model are compared with those obtained through a simplified approach: the line-source approach. The models are both validated with experimental data and with numerical results from other authors. On the one hand the conjugate ...

Effect of Substrate Contact Angle on Ink Transfer in Flexographic Printing - new

F. E. Hizir[1], D. E. Hardt[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Flexography is a roll-based mass printing process used in manufacture of printed products such as sensors, self-cleaning surfaces, and flexible electronics. Flexography involves inking of a stamp wrapped around a roller, and the transfer of ink on the stamp surface to a printing substrate as the roller rotates against it. Ink transfer ratio from the stamp surface to the printing substrate is ...

Studying PEM Fuel Cells using Equation Based Simulation

J. Blackburn [1], N. McCartney [1],
[1] National Physical Laboratory, London, UK

We present computer simulation results for PEM fuel cells using COMSOL Multiphysics® software. We have developed novel PDE equations at NPL from first principles and these are more realistic than models typically used in literature. The theory includes Maxwell-Stephan and Nernst-Planck equations for the diffusion and electrochemistry as well as equations governing electrostatic and stress/strain ...