Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Advanced 3D Imaging Coupled to Modeling of Fuel Cell and Battery Electrodes

F. Tariq[1], V. Yufit[1], M. Marinescu[1], G. Cui[1], M. Kishimoto[1], N. Brandon[1]
[1]Imperial College London, London, United Kingdom

Solid Oxide Fuel Cells (SOFC) and Li-ion batteries (LIB) are electrochemical devices where performance is dependent on reactions inside porous electrode microstructures. Here we use tomographic techniques to probe 3D electrode structures (anodes and cathodes) at micro-nanometer length scales. Subsequently, micro/nano structural changes in electrodes are characterized and quantified. Utilizing ...

Numerical Modelling of Electrophoresis Applied to Restoration of Archaeological Organic Materials

J. Caire[1], A. Bouh[1], and E. Guilminot[2]
[1]LEPMI, UMR 5631, INPG - CNRS, Saint Martin d’Hères, France
[2]EPCC, Arc'Antique, Nantes, France

Restoration of archaeological materials from oceans is a major activity of Arc’ Antique. Organic materials such as wood, tissues, leathers, papers and ceramics found in sea water are always impregnated with salts. Rinsing such archaeological objects with pure water to extract the salts takes too long, so electrophoresis was used to improve the salt extraction. The objective of this ...

Thermal Integration of Coupled SOFC System with a High-Performing Metal Hydride Storage

A. Mossadegh Pour[1], A. Dhira [1], R. Steinberger-Wilckensa[1]
[1]Department of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom

Auxiliary Power Units can play an important role in reducing vehicle emissions, especially in diesel and kerosene driven vehicles. In conventional vehicles the electricity supply comes from a generator that is directly coupled to the propulsion engine. New generation of fuel cell APUs exclusively use Solid Oxide Fuel Cells with some developments in high temperature polymer electrolyte membranes ...

Constructing COMSOL Models of a Bacteriological Fuel Cell

R. Coker[1], J. Mansell[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

We have started constructing preliminary design COMSOL models of a bacteriologically driven \'fuel cell\' that is intended to process waste products, such as carbon dioxide and brine, from a crewed vehicle. At this early stage, this complex system is reduced to two electrodes separated by a membrane. The electrolyte is a brine appropriate for growing methanogenic bateria, though none are ...

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Numerical Modeling of Pit Growth in Microstructure

S. Qidwai[1], N. Kota[2], V. DeGiorgi[1]
[1]Naval Research Laboratory, Washington, DC, USA
[2]Science Applications International Corporation, Washington, DC, USA

Pitting corrosion is a complex phenomenon where rates of: i) chemical reactions, ii) diffusion of various species involve in those reactions, and iii) species dissolution at the metal-electrolyte interface are fully dependent on each other, except under special conditions or assumptions. One set of such conditions is that: a) there are no species concentration gradients due to the rapid mixing ...

Effect of Channel Width on Fuel Cell Performance Using 3D Modelling

R. Pushpangadan, S. S. Dimble, and S. P. Duttagupta
IIT Bombay
Mumbai
Maharasthra, India

A three Dimensional model of the PEM Fuel cell is implemented using COMSOL Multiphysics and the channel width is varied to study the performance.Effect of channel width on the performance of the cell is studied by varying the width of the channel and keeping channel width to rib ratio constant at 1. Rib width is the width of the GDL area which is not covered by the channel. All other parameters ...

Numerical Analysis of Distribution and Evolution of Reaction Current Density in Discharge Process of Lithium-Ion Power Battery

Y. Tang [1], M. Jia [1], J. Li [1], Y. Lai [1], Y. Cheng [1], Y. Liu [1]
[1] School of Metallurgy and Environment, Central South University, Changsha, China

The reaction current density is an important process parameter of lithium-ion battery, significantly influencing its electrochemical performance. In this study, aimed at the discharge process of lithium-ion power battery, an electrochemical-thermal model was established to analyze the distribution of the reaction current density at various parts of the cathode and its evolution with the time of ...

Evaluation of Performance of Enzymatic Biofuel Cells with Microelectrode Arrays Inside a Blood Artery via Finite Element Approach

C. Wang[1], Y. Song[1]
[1]Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are considered as a promising candidate for powering miniature implantable devices. In order to predict the performance in the human blood artery, we simulated a 3D EBFC chip with highly dense micro-electrode arrays. In this simulation using COMSOL Multiphysics®, we applied the 1) Michaelis Menten equation; 2) Nernst potential equation; 3) Navier Strokes velocity, ...