Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Investigation of Performance of SOFC in Hydrocarbon Fuel

S. T. Aruna [1], S. Senthil[1], S. Chauhan [1], B. Shriprakash [1],
[1] CSIR-National Aerospace Laboratories, Bangalore, Karnataka, India.

SOFC is a high temperature electrochemical device known for its fuel flexibility. Apart from using pure hydrogen, it can utilize CO (carbon monoxide), CH4 (methane) or any other higher hydrocarbon. Since methane is highly researched hydrocarbon fuel, it was chosen to start with. The most prominent problem faced while using hydrocarbon fuel in SOFC is the formation and deposition of carbon on the ...

Thermal Modeling of Lithium-ion Pouch-type Cell for Better Cycle Life and Safety Application

J. B. Sangiri [1], S. Ghosh [1], C. Chakraborty[1]
[1] Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Lithium-ion batteries are most preferable energy storage devices for its higher energy density, flexible form factor and lightweight design than comparable battery technologies. The present simulation work is focused on incorporating contact thermal resistance within a two-dimensional thermal model of Lithium-ion pouch cells. In the present study COMSOL Multiphysics® software has been used to ...

Simulation of the Shape of Micro Geometries Generated with Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1,2]
[1]Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute of Machine Tools and Forming Technology, Chemnitz, Germany

Electrochemical Machining with a closed electrolytic free jet is a special procedure to generate complex micro structures by help of anodic dissolution. The work piece shape is fabricated by supplying an electrolytic current through an electrolyte jet ejected from a small nozzle. In this study COMSOL Multiphysics is used to simulate the electric current density in the jet and the dissolution ...

Modeling the Effect of Discrete Distributions of Platinum Particles in the PEM Fuel Cell Catalyst Layer

C.F. Cetinbas[1], A.K. Prasad[2], S.G. Advani[1]
[1]Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]University of Delaware, Newark, DE, USA

In this study, the basic catalyst layer (CL) structure, consisting of carbon-supported Pt particles (C|Pt) and an ionomer binder, is investigated numerically by using COMSOL. The significance of modeling discrete Pt particles on the carbon support is highlighted by comparing the cell performance results to the case in which the Pt is assumed to be distributed uniformly over the carbon support as ...

Numerical Modeling of a Microtubular Solid Oxide Fuel Cell Using COMSOL Multiphysics®

P. Pianko-Oprych[1], E. Kasilova[1], Z. Jaworski[1]
[1]West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Szczecin, Poland

Micro-tubular Solid Oxide Fuel Cells (mSOFC) are attracting more and more interest as new generation of energy conversion devices. Although commercial applications still suffer from high costs, there is a need for further improvement of the cell performance, durability and start-up. To resolve those challenges, knowledge of the distributions of species concentration, temperature and current ...

3D Model for the Dynamic Simulation of SOFC Cathodes

A. Häffelin, J. Joos, M. Ender, A. Weber, and E. Ivers-Tiffée
Institut für Werkstoffe der Elektrotechnik (IWE)
Karlsruher Institut für Technologie (KIT)
Karlsruhe, Germany

A fuel cell is an electrochemical system, which converts chemical energy into electricity by a controlled reaction of hydrogen and oxygen. The performance of the electrode is likewise determined by its material and the microstructure. The simulations were performed directly on reconstructions of real electrodes, obtained from focused ion beam (FIB) tomography. A finite element method (FEM) ...

Low Pt Cathodes for High Performance PEMFCs: Modeling and Experiments

F. Daouda[1], J. Hamelin[1], P. Benard[1], S. Kumar Natarajan [1]
[1]Insitut de recherche sur l'hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada

We present a novel multi-layered electrode fabrication technique for polymer electrolyte membrane fuel cells (PEMFCs). This method consists of alternate layers of Pt deposition (0.05 mg/cm²) by sputtering on the painted multi-walled carbon-Nafion layer (CNL) with larger concentration of catalyst particles closer to the membrane. Parametric models were developed and validated by experimental ...

Multiphysics Simulation of an Anode-supported Micro-tubular Solid Oxide Fuel Cell (SOFC)

G. Ganzer, W. Beckert, T. Pfeifer, and A. Michaelis
Fraunhofer IKTS
Dresden, Germany

The high thermal stability and fast start-up behavior make micro-tubular solid oxide fuel cells (SOFCs) a promising alternative for small-scale, mobile power devices in the range of some Watts. To understand the transport phenomena inside a single micro-tubular SOFC, a 2-D, axi-symmetric, non-isothermal model, performed in COMSOL Multiphysics® 4.2, has been developed. Due to long current path ...

Using Computational Multiphysics to Optimise Channel Design for a Novel PEM Fuel Cell Stack

F. A. Daniels[1], D. J. L. Brett[1], A. R. Kucernak[2], and C. Attingre[2]
[1]University College London, London, UK
[2]Imperial College London, London, UK

Polymer electrolyte membrane (PEM) fuel cells have significant potential as a source of clean, efficient energy production. This study presents a three-dimensional, non-isothermal, fully-coupled model of a PEM fuel cell with printed circuit board current collectors. The effect of the current collector design on transport phenomena and consequent cell performance is investigated. The model ...

Heat Generation Breakdown of Lithium-ion Batteries

WeiDong Fu [1], DongYou Wang [1], ZhiJun Qiu [1]
[1] Contemporary Amperex Technology Co., Limited, Ningde, China

The thermal behavior of lithium ion batteries could be investigated by efficient simulation method [1,2]. Here, we developed an electrochemical-lumped thermal analytical model to analyze the thermal response and heat breakdown of a pouch LiNi1/3Co1/3Mn1/3O2 battery (3Ah) under fast-discharging conditions at 7C(environment temperature:20℃). The key parameters of the proposed model (such as ...