Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. Mainly the GFRC and CFRC laminates were selected in form either thin separate plate or sandwich structure. The ...

FEM Simulation for ‘Pulse-Echo’ Performances of an Ultrasound Imaging Linear Probe

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Pulse-echo FEM simulation is seldom found in literature for ultrasound imaging array probes, since the complete modeling of such device is extremely complicated. Nevertheless, the 2D FEM described in the present work was successful, thanks to the following design procedure (see figure): Two piezoacoustic models were employed, one for transmission of the pressure wave into the acoustic domain, ...

Modeling the Sound Radiation by Loudspeaker Cabinets - new

M. Cobianchi[1], M. Rousseau[1]
[1] B&W Group Ltd, Steyning, UK

While musical instruments often rely on a body which resonates on purposefully to amplify the vibration produced by a string or a membrane, such as in a violin or a guitar, loudspeaker cabinets should not contribute at all to the total sound radiation, but aim instead to be a perfectly rigid box which encloses the drive units in charge to transform the electrical signal at their terminal into ...

Acoustical Design of Stethoscope for Improved Performance

C. Thiagarajan[1], Gururajan R.[2], A. H. Baig[2], Prema S.[3]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka India
[2]University of Southern Queensland, Toowoomba Qld 4350, Australia.
[3]RMK Engineering College, Chennai, Tamil Nadu, India

Stethoscope is in use for more than 200 years for medical diagnostics, especially for auscultation. Recently, the unprecedented growth in mobile technology revived the use of stethoscope for Telehealthcare. Digital or electronic stethoscopes are increasingly researched for use in Telehealthcare. This paper mainly focuses on the acoustical and multiphysics design aspects of the stethoscope for ...

MEMS Electrostatic Acoustic Pixel

A. Arevalo [1], D. Conchouso [1], D. Castro [1], I. G. Foulds [2],
[1] Computer, Electrical, & Mathematical Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2] The University of British Columbia, School of Engineering, Vancouver, BC, Canada

The growth of the electronics industry demand better components for the electronic systems. Such components need to be improve to keep up with the evolution of the digital era. The loudspeaker design has not been changed for almost a century [1-5]. The acoustic transducer is the last analogue component needed for a true digital audio system. We want to validate the feasibility of using an ...

Accuracy of Fully Coupled Loudspeaker Simulation Using COMSOL

M. Hedges[1][2] and Y.W. Lam[1]
[1]Acoustics Research Centre, School of Computing, Science & Engineering, University of Salford, Salford, United Kingdom
[2]Monitor Audio Ltd., Rayleigh, Essex, United Kingdom

Loudspeaker simulation is used to inform the designer as to the performance of a design. In recent years the Finite Element Method (FEM) has been used to model the mechanical and acoustical attributes of a loudspeaker with varying success. This paper shows how a model that incorporates the magnetic, electromagnetic, mechanical and acoustical domains performs. These domains will be coupled where ...

Acoustic Wave Propagation in Water Filled Buried Polyethylene Pipes - new

T. Graf[1], T. Gisler[1], P. Sollberger[1], O. Schaelli[1]
[1]School of Engineering and Architecture, Lucerne University, Horw, Switzerland

Axisymmetric acoustic waves propagating along buried water pipes have been investigated by FEM and experimentally. Universal dispersion relations of the fundamental mode were obtained as a function of the standard dimension ratio SDR and of the material surrounding the pipe (soil, air). At low frequency there exists little dispersion and the “dc” phase velocity of the leak noise is independent ...

Dynamics of Rotors on Hydrodynamic Bearings

R. Eling[1]
[1]Mitsubishi Turbocharger & Engine Europe, Almere, The Netherlands

This study presents a rotordynamic analysis of a rotor on hydrodynamic bearings using COMSOL Multiphysics®. In this paper, the complexity of the model is gradually increased. Starting point of the analysis is the modal analysis of the rotor in free-free conditions. A Reynolds model is set up to predict the film pressure distribution under shaft loading. Due to the cross coupling terms of the ...

A Multiphysics Approach to the Design of Loudspeaker Drivers

R. Magalotti [1]
[1] B&C Speakers, Bagno a Ripoli, Italy

Loudspeaker drivers are energy transducers: their main goal is to efficiently convert electrical energy to acoustic energy (sound), through the movement of mechanical parts. As such, they are prime candidates for the application of multiphysics methods and tools. The talk will outline the growing set of tools that COMSOL Multiphysics® software puts in the hands of the loudspeaker designer; ...

SAW Sensors for Surgical Arm using Piezoelectric Devices

Rakesh Kumar Pati [1], SK Mohammed ali[1], Sakuntala Mahapatra[1], Millee Panigrahi[1]
[1]MEMS Design Centre, Dept. of ETC, Trident Academy of Technology, Bhubaneswar, Odisha, India

Despite of the existing successful clinical applications, however, the interaction, i.e. artificial sensing, between the robot and the patient is still very limited. With the help of various cameras, vision is almost the only feeling that a robot can have. In order to imitate the human skin, various signals e.g., the strength of pressure, change of strength, speed and acceleration should be ...