Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Investigating Magnetic and Electric Fields Couplings for 3D Models in Harmonic and Transient States

O. Maloberti [1], O. Mansour [1]
[1] ESIEE Amiens, Amiens, France

At present, no 3D transient magnetic and electric fields formulation with strong eddy currents and high electric fields is available in the physical applications with COMSOL Multiphysics® software. However, some industrial products need such a tool, as it is the case for induction coils of pulsed magnetic technologies. The principle is to induce a force thanks to strong eddy currents induced by ...

Prototype Probe Development for Liquid Injection Shutdown System Tube Gap Detection by Remote Field Pulsed Eddy Current Technique

T. V. Shyam[1], B. S. V. G. Sharma[1], J. N. Kayal[1]
[1]Bhabha Atomic Research Centre, Trombay, Mumbai, India

Pressurised Heavy Water Reactors (PHWR) play a prominent role in contributing power for the Nuclear Energy Programme in India. In 540MWe type PHWR reactors, there are horizontally placed Liquid Injection Shutdown System (LISS) tubes for injecting poison into the moderator to clamp down the nuclear power under trip conditions. The Horizontally placed LISS pipes are placed perpendicular to the ...

Determination of Electric Potential Distribution and Cell Resistance of a Uranium Electrorefining Cell

S.P. Ruhela, S. Agarwal, B. Muralidharan, B.K. Sharma, B.P. Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India

Electrorefining is an electrolytic process for obtaining high purity metal. In this process the impure metal is made anode and the high purity metal is deposited on cathode. Electrorefining is a key step in pyrochemical reprocessing of spent fuel from metal fuel fast reactors. Development of an electrorefining cell, in which processing of 10 kg of simulated spent fuel will be demonstrated, is ...

Finite Element Model of a Ferroelectric

P.R. Sainz, A.I. De Andrés Rubio, and A.L. Dorado
Departamento de Electrónica, Escuela Politécnica Superior, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain

Ferroelectric technology continues to attract significant interest due to its wide range of applications (capacitors, nonvolatile memories, accelerometers ...). In this work we present a finite element model of a ferroelectric. Piezoelectric and ferroelectric matrix are included. The coupling between the piezoelectric and ferroelectric parameters be introduced formally using a thermodynamic ...

Benchmark of COMSOL vs. ROXIE Codes for the Calculation of a Particle Accelerator Quadrupole

I. Rodriguez, and J. L. Munoz
ESS Bilbao
Bilbao, Spain

The field quality requirements of most particle accelerator magnets are very tight and, therefore, very precise simulations are needed to accurately calculate these devices. CERN\'s ROXIE code is widely used as a reference software to calculate normal conducting and superconducting magnets for particle accelerator applications. ROXIE uses the full vector potential coupled to the BEM-FEM ...

Coupled Electromagnetic - Dynamic FEM Simulation of A High Frequency MEMS Energy Harvester

E. Topal
Middle East Technical University

In this study, a detailed finite element model coupling the motion dynamics and electromagnetics of a diaphragm based MEMS vibration energy harvester is presented. The energy harvester converts low frequency vibrations to high frequency response by magnetic actuation of a diaphragm carrying coils. AC/DC, Solid Mechanics and Moving Mesh (ALE) modules are coupled together in one 3-D model to ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Electromagnetic Characterization of Big Aperture Magnet Used in Particle Beam Cancer Treatment

J. Osorio Moreno[1], M. Pullia[1], C. Priano[1]
[1]Fondazione CNAO, Pavia, Italy

Resistive magnets are one of the principal components of ion medical accelerator systems used in heavy ion cancer treatment. To fulfill medical requirements, like the size of irradiation field and an uniform dose distribution, some magnets of the transport beam line may require large aperture and a large region where the magnetic field is within specifications (good field region). After a ...

Magnetotelluric Response Distortion Over Rugged Topography

D. Rizzello[1], P. Canepa[1], E. Armadillo[1]
[1]DISTAV - University of Genova, Genova, Italy

Topographic effects on magnetotelluric responses may be severe on rugged terrains. Finite elements simulation is a valuable tool to quantify this effect, due to its capability to match real morphologies. To do the estimate of the distortion, the AC/DC Module of COMSOL has been employed, using a model of homogeneous resistivity on which a DEM (Digital Elevation Model) profile of the Deep Freeze ...

Secondary Electron Trajectories in Scanning Tunneling Microscopy

H. Cabrera [1], D. A. Zanin [1], L. G. De Pietro [1], A. Vindigni [1], U. Ramsperger [1], D. Pescia [1],
[1] Laboratory for Solid State Physics, Microstructure Research, ETH Zurich, Zurich, Switzerland

The recently developed technique Scanning Tunneling Microscopy in the Field Emission regime (STM FE) is based on the Russell Young's topografiner technology. The set-up is a no contacting device consisting of a sharp tip approached vertically to a conducting surface at variable distances and biased with a small voltage with respect to the surface. The system builds a junction across which ...