Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Comparison of Magnetic Barkhausen Noise Tetrapole and Dipole Probe Designs

P. R. Underhill [1], T. W. Krause [1],
[1] Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

COMSOL Multiphysics® software is used to understand the difference in behaviour of two Magnetic Barkhausen Noise (MBN) probes. The dipole probe has to be physically rotated to sample the angular distribution of the MBN. The tetrapole probe uses vector superposition to rotate the magnetic field without probe motion. Using the AC/DC Module and non-isotropic material properties, it was found that, ...

A Multiphysics Model to Ensure Power Cables are Restrained Safely During Short Circuit Fault

M. S. Yeoman [1], R. J. Varley [1], R. Damodharan [1], L. Frizzell [2],
[1] Continuum Blue Ltd., Cardiff, United Kingdom
[2] CMP Products Ltd., Cramlington, United Kingdom

Trefoil cable formation is used where three phases are carried by three single core power cables, rather than a single three phase multicore cable. The advantage of installing three single cores in such a configuration is that it minimises the induction of eddy currents, therefore reducing the effect of localised heating, while maintaining the current carrying capacity of the circuit. Trefoil ...

Electro Thermal Performance Prediction of Radio Frequency Ablation System for Efficient Cancer Treatment

C. Thiagarajan[1], V. Gnanasekar[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka, India.
[2]Perfint Healthcare Pvt. Ltd, T.Nagar, Chennai, India.

Cancer causes significant human deaths. Radiofrequency ablation is an encouraging procedure for cancer treatment. The objective is to demonstrate the multiphysics simulation methodology. This paper summarizes the problem , governing equations, methodology, assumptions, simulation results and discussion related to the thermal performance prediction of radio frequency ablation on a homogeneous ...

Optimal Utilization of Railgun

N. R. Mahajan[1], S. B. Patel[1], Z. A. Khan[1]
[1]Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Andhra Pradesh, India

Railgun is an electrically-powered gun that accelerates a conductive projectile along magnetic metal rails. Various factors increase the projectile velocity. Each method has its own advantages and disadvantages. While increasing the projectile velocity, one has to keep in mind the longevity of the rail guns for practical use . Railguns are often damaged after few uses due to the extreme working ...

Elucidating the Mechanism Governing the Cell Rotation Behavior Under DEP

G. Zhang[1], Y. Zhao[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In our experiments with manipulating cells with DEP, we noted that some cells are constantly spining. By hypothesing that the cell spining is caused by the non-circular shape of the cell body and the off-centered location of its nucleus and that the rotation direction depends on the relative location of nucleus with respect to the electrical field, we found that the observed cell rotation was ...

Doping Dependent I-V Characteristics of Single Silicon Nanowire

S. Mishra [1], S. K. Saxena [1], P. Yogi [1], P. R Sagdeo [1], R. Kumar [1],
[1] Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

In the present work, we have studied the electron transport properties of single silicon nanowire using Semiconductor Module of COMSOLMultiphysics software. We construct a MSM (metal-semiconductor-metal) model where metal is selected as copper and semiconductor is taken as silicon. Silicon is doped with n-type impurity by increasing doping concentration. Further, the Schottky diodes formed at ...

Structural Design of a NFC-Reader-Antenna for Automotive Electronics with FEM Simulation

A. K. Palit [1],
[1] ZF-Lemförder Electronic GmbH, ZF-Friedrichshafen AG. Group, Friedrichshafen, Germany

The design of a right contour/structure of the NFC-antenna is presented. The NFC-reader-antenna is applied later to communicate with the NFC-tag (transponder) of a smart phone placed in the phone box of the car. The NFC-reader-antenna with selected contour is printed directly on the PCB and the antenna-PCB is placed under the phone box at the center console. The designed antenna must fulfill ...

Electromagnetic Force Simulations on a Reaction Sphere for Satellite Attitude Control

L. Rossini[1], E. Onillon[1], O.Chetelat[1], and C. Allegranza[2]
[1]Centre Suisse d’Electronique et Microtechnique, Switzerland
[2]ESA/ESTEC, The Netherlands

In the frame of an ESA project, CSEM in collaboration with other partners has developed an innovative Attitude Orbit Control System concept that relies on a Reaction Sphere. We propose to use one unique magnetic bearing Reaction Sphere whose spin axis and angular velocity can be positioned by dedicated control. The design is based on a 3-D permanent magnet motor obtained with a multi pole rotor ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Modeling, Simulation, and Control of Dual Electromagnet Active Magnetic Levitation

A.K. Pi?at[1]
[1]AGH University of Science and Technology, Kraków, Poland

Introduction: The dual electromagnet configuration of Active Magnetic Levitation system (AML) where the electromagnets are locate opposite to each other, constitutes and single axis of the Active Magnetic Bearing. The same configuration can be used to test the single electromagnet AML controller. A single electromagnet AML was modeled and simulated with COMSOL Multiphysics. The modeling and ...