Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Precision Magnetic Fields for Fundamental Neutron Symmetries

M. Higginson-Rollins[1], C. Crawford[2]
[1]Department of Electrical & Computer Engineering, University of Kentucky, Lexington, KY, USA
[2]Department of Physics & Astronomy, University of Kentucky, Lexington, KY, USA

The traditionally magnetic design process involves guessing at a reasonable conductor geometry, using finite element analysis (FEA) software to calculate the resulting fields, and modifying the configuration iteratively to reach an acceptable solution. Taking the opposite approach, we developed a method of calculating the conductor geometry as a function of the desired magnetic field. This method ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

FEMLAB Simulation von Hohlkathodenentladungen zur Erzeugung von extrem ultravioletter (EUV) Strahlung

Wieneke, S., Kromer, J., Ach, F., Viöl, W.
Hochschule für angewandte Wissenschaft und Kunst, Fakultät Naturwissenschaften und Technik, Göttingen

Für intensive Strahlungsquellen im Spektralbereich von Vakuumultraviolett (VUV, 10 -200 nm) über extremes Ultraviolett (XUV, 1 – 10 nm) bis in den Bereich der weichen Röntgenstrahlung (SXR, 0,1 – 1 nm) (siehe Abbildung 1) besteht in Forschung und Industrie ein hoher Bedarf, der in der Zukunft noch deutlich wachsen wird. Insbesondere im Bereich der Röntgenlithographie zur Herstellung von ...

A Model for High Temperature Inductive Heating

S.A. Halvorsen[1]
[1]Teknova AS, Kristiansand, Norway

COMSOL Multiphysics has been applied to develop a model for inductive heating. A coarse, lumped model of the interior of a high temperature reactor is coupled to finite element models for the electromagnetic field, the temperature distribution outside the reactor, and mechanical stresses in the crucible. The model can be applied to study operational conditions, thermal stresses, or design details ...

Permanent Magnet Arrangements for Low-Field NMR

C. Horch[1], S. Schlayer[1], and F. Stallmach[1]
[1]Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany

For low-field NMR (Nuclear magnetic resonance), NdFeB permanent magnet arrangements are proposed to provide the static polarizing magnetic field. Especially a parallel and a circular arrangement of the permanent magnets, iron yokes and small shim magnets were tested and improved by COMSOL. The intent was to guide the design and the construction of NMR magnets by calculating the magnetic field ...

Fast Computation of Capacitance Matrix and Potential Distribution for Multiconductor in Non-Homogenous Multilayered Dielectric Media

S.M. Musa[1], and M.N.O. Sadiku[1]

[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the fast computational and modeling of multiconductor transmission lines interconnect in non-homogenous multilayered dielectric media using the finite element method (FEM). We illustrate the potential distribution of the multiconductor transmission lines for the models and their solution time. We compared some of our results of computing the capacitance matrix with method of ...

Determining the electric characteristics of an electromagnetic actuator by static simulations

T. Müller1, A. Schwenger2, and H. Haase1
1Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany
2Volkswagen AG, Hannover, Germany

This paper describes the determination of the electric characteristics of an electromagnetic actuator with respect to a required time dependent displacement. The model used here analyzes an actuator with a permanent magnet rotor; a nonlinear iron magnetization curve is considered. The result is the force of the actuator depending on ampere-turns and displacement. Additionally, the flux linkage to ...

3-D Modeling of a Differential Impedance Obstacle Detection Sensor for Horizontal Directional Drilling Operations

J. N. Shah1, A. Jaganathan1, E. N. Allouche1, M. Kieba2, and C. J. Ziolkowski2
1Louisiana Tech University, Ruston, LA, USA
2Gas Technology Institute, Chicago, IL, USA

Horizontal Directional Drilling (HDD) is a commonly used technology for the installation of pipelines, conduits and cables in urban areas and across obstacles such as rivers, railways and freeways. A main concern in using the HDD method is the risk of hitting existing buried utilities during the boring process. The Differential Impedance Obstacle Detection (DIOD), developed by the Gas Technology ...

Optimization of Skin Impedance Sensor Design with Finite Element Simulations

F. Dewarrat, L. Falco, A. Caduff, and M. Talary
Solianis Monitoring AG, Zürich, Switzerland

Impedance spectroscopy is a measurement technique that has been investigated in a wide variety of medical applications. An example is the measurement of the dielectric properties of the skin and underlying tissue using sensors placed in contact with human skin with capacitive fringing field electrodes. The aim of this work is to use finite element methods for optimizing the sensor design to ...

Effective Medium Theory of Nanodielectrics for Embedded Energy Storage Capacitors

R. Bikky, N. Badi, and A. Bensaoula
University of Houston, Houston, TX, USA

In this work, we present the effective properties of nanodielectrics with gold (Au) nanoparticles embedded in polymer (Polyvinyl Pyrrolidone (PVP)) matrix, calculated by using finite element method (FEM) based simulation in COMSOL Multiphysics software. Drude model is used to calculate size dependent complex dielectric function of Au. EMTs of Maxwell-Garnett, Bruggeman and Looyenga models are ...

Quick Search