Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

High Frequency Electromagnetic Device Modeling with COMSOL: Simulation vs. Experiment

P. Alotto[1], F. Dughiero[1], F. Bressan[1], M. Bullo[1]
[1]Università di Padova, Dipartimento di Ingegneria Industriale, Padova, Italy

Computer simulation is mandatory for the optimization of electromagnetic devices. Here we concentrate on two classes of devices operating in the MHz and GHz range, namely microwave ovens and TEM cells for electromagnetic compatibility testing. In particular we concentrate on the issue that numerical results are usually different from the experimental ones and this can be due, among others ...

Ventilation System of a Microwave Assisted Drying Kiln

A.-G. Ghiaus[1], M.-A. Istrate[1], A. Georgescu[1]
[1]Technical University of Civil Engineering, Bucharest, Romania

The paper presents the analysis and optimization of the ventilation system inside of a drying lumber kiln. As with any part of the manufacturing process, improper drying techniques cause quality degradation and considerable amount of energy loose. The improvement and optimization of air distribution systems in drying kilns contributes to the preservation of the wood quality. The performance of ...

A Study of Thermo-Fluid Behavior in Tubular Metal Hydride Beds in the Hydriding Process

S. Makridis[1], E.I. Gkanas[1], A. Ioannidou[2], E.S. Kikkinides[2], A.K. Stubos[3]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece & Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece
[2]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[3]Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece

Hydrogen, the most abundant element in the universe, has great potential as an energy source, and can be generated from renewable energy sources. We used COMSOL for the solution of the energy, mass and momentum balance equations that describe the hydrogen absorption and desorption procedure in the metal hydride compressor. Thermodynamic or engineering properties like the reaction enthalpy ??, ...

Predicting the Retention Time of Nuclear Reaction Products in the PSI Recoil Chamber Using COMSOL Multiphysics

R. Dressler[1], R. Eichler[1]
[1]Paul Scherrer Institute, Villigen, Switzerland

Introduction: The chemical properties of the heaviest elements (atomic number Z > 103) depend on the influence of the high nuclear charge to their electronic structure. Enhanced chemical stability of copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114) was predicted already 40 year ago by Pitzer [1]. The challenge of chemical investigations of these elements is the tiny production rates of few ...

3D Simulation of Air-Glass Heat Exchange in a Set of Vials

G. Mongatti[1], A. Borelli[1]
[1]Marchesini Group, Pianoro, Italy

In this model a three-dimensional heat transfer analysis was performed by using COMSOL Multiphysics\' Heat Transfer Module. The model is about the heating of a set of vials (Figure 1) in a current of hot air in the laminar regime. We used time dependent studies to predict the thermal behavior of the glass and to estimate the temperatures in the various points of the bottles at various times. ...

Numerical Simulation Study on the Heat and Mass Transfer Through Multi-Layer Textile Assemblies

S.F. Neves[1], J.J.B.L.M. Campos[1], T.S. Mayor[2]
[1]CEFT – Transport Phenomena Research Center, Chemical Engineering Department, Porto University, Porto, Portugal
[2]CeNTI - Centre for Nanotechology and Smart Materials, Rua Fernando Mesquita, Vila Nova de Famalicão, Portugal

A clothing system should offer the user a period of relatively comfort. However, changes in the ambient conditions over day affect the heat and mass transport in the system, influencing the user comfort perception. In order to gather information to allow the optimization of clothing systems, it is essential to understand the heat and moisture transfer occurring across multi-layer textiles. For ...

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, ...

221–228 of 228
Next |