Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. Mainly the GFRC and CFRC laminates were selected in form either thin separate plate or sandwich structure. The ...

Thermal Simulations of a LED Light Using COMSOL Multiphysics

M. Maaspuro[1]
[1]University of Turku, Turku, FInland

An experimental LED light composed of a multi-chip LED-module, a LED driver and an efficient heat sink, was investigated using COMSOL Multiphysics software and the Heat Transfer Module. In an LED light heat is mainly generated in the LEDs but some amount of heat is generated also in the LED driver. The main target of the simulations was to resolve the junction temperatures of LEDs, the most ...

FEM Based Design and Simulation Tool for MRI Birdcage Coils Including Eigenfrequency Analysis

N. Gurler[1], Y. Ziya Ider[1]
[1]Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

Designing a Radio Frequency (RF) birdcage coil used in Magnetic Resonance Imaging (MRI) at high frequencies where the wavelength is comparable with the coil dimensions is a challenging task. Before construction of the coil, not only calculating the capacitance value which is necessary for the coil to resonate at the desired frequency but also geometrically modeling the coil in a 3D simulation ...

Utilization of COMSOL Multiphysics' JAVA API for the Implementation of a Micromagnetic Modeling and Simulation Package with a Customized User Interface

L. Teich[1], A. Hütten[2], C. Schröder[1]
[1]Department of Engineering Sciences and Mathematics, Computational Materials Science & Engineering (CMSE), University of Applied Sciences Bielefeld, Bielefeld, Germany
[2]Department of Physics, Thin Films and Nanostructures, Bielefeld University, Bielefeld, Germany

One of the big advantages of COMSOL Multiphysics is the possibility to implement user-defined partial differential equations (PDE) which can be coupled to COMSOL\'s predefined physics interfaces. However, using the tool’s standard user interface requires manual implementation of the PDEs and a multitude of problem-specific parameters. This process is not just error-prone but also very time ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Simulation of PCM Melting Process in a Rectangular Enclosure Differentially Heated

G. Petrone[1], G. Cammarata[1]
[1]Department of Industrial Engineering, University of Catania, Catania, Italy

This study deals with a numerical investigation of the melting process of a PCM in a rectangular enclosure differentially heated. COMSOL Multiphysics is used in order to numerically solve Navier-Stokes and energy equations in the considered system. Adopting an enthalpy formulation, one single equation is used to solve transient conduction and convection heat transfer in both the solid and liquid ...

Comparison of Heat and Mass Transport at the Micro-Scale

E. Holzbecher[1], S. Oehlmann[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Phenomena of heat and mass transfer are often compared, in various porous media applications. Questions of practical interest are, for example, if tracers can be used for the prediction of heat flow, or vice versa if heat can be utilized as, possibly retarded, tracer for predicting the migration of contaminants, nutrients or other substances. Using numerical modelling in artificial porous media ...

Computational Modeling and Simulation of the Human Duodenum

B. Hari[1], S. Bakalis[1], P. Fryer[1]
[1]The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United Kingdom

Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human intestine, thereby advancing the diagnosis and treatment of gastrointestinal related diseases. The aim of this ...

Ampacity Simulation of a High Voltage Cable Used in Offshore Wind Farms

E. Pelster[1]
[1]Wenger Engineering, Ulm, Germany

The ampacity of a cable depends on the cross section of its conductor. When selecting a cable design for a specific application it is of interest to choose the lowest possible conductor cross section in order to reduce material costs. Therefore an exact calculation of the ampacity is necessary (it is usually limited by the thermal resistance of the insulating cable materials). Commonly the ...

Thermoacoustic Analysis of Combustion Instability Importing RANS Data

G. Campa[1], E. Cosatto[2], S. Camporeale[1]
[1]Politecnico di Bari, Bari, Italy
[2]Ansaldo Energia, Genova, Italy

A hybrid technique based on the use of the FEM and the transfer matrix method is used to identify the frequencies at which thermoacoustic instabilities are expected and the growth rate of the pressure oscillations at the onset of instability. The Helmholtz equation is used to model the combustion chamber and the classical ?-? formulation for the flame model is adopted. The gas turbine combustion ...