Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Validation of Negative Ion Beam Space Charge Compensation

M. Cavenago[1], and P. Veltri[2]
[1]INFN-LNL, Legnaro, Italy
[2]RFX Consortium, Padova, Italy

The transport of intense ion beams with reduced beam divergence over reasonable drift distances requires a reliable space charge compensation (SCC). Negative ion beams (required in the Neutral Beam Injectors envisioned for the ITER tokamak) are here discussed. Secondary particles are generated by beam-gas collisions within the beam volume and their motion is followed by explicit leapfrog time ...

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

Finite Element Analysis of Equine Tooth Movement Under Masticatory Loading

M. Gardemin[1], M. Lüpke[1], V. Cordes[2], and C. Staszyk[2]
[1]Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Hannover, Germany
[2]Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany

Like humans, horses can develop a variety of dental problems. Different equine diseases occur in different areas of the equine cheek tooth or its surrounding tissues. With a realistic simulation of a chewing cycle it can be possible to link mechanical phenomena such as high stress in distinct areas to commonly occurring diseases. According to different angles of the acting chewing force, ...

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Analysis Of Linearly Polarized Modes

I. Avram, and I. Gavril Tarnovan
The Technical University of Cluj Napoca
Cluj, Romania

This paper presents a study on the propagation modes of electromagnetic waves through a step index fiber optics. To analyze the propagation of electromagnetic field, a simulation in Comsol 4.0 has been implemented using two different optical fibers. Obtaining the propagation modes, called linearly polarized modes (LPnm) to get their characterization according to the radial and azimuthal ...

Comparison of 2D Conduction Models for Vertical Ground Coupled Heat Exchangers

A. Priarone[1], and S. Lazzari[2]
[1]DIPTEM-TEC, Università di Genova, Genova, Italia; Corresponding Author:
[2]DIENCA, Università di Bologna, Bologna, Italia

The effect of the infinite length approximation on evaluating the temperature of the surface of Borehole Heat Exchangers is determined by means of COMSOL Multiphysics. In detail, two 2D models of a BHE are compared: in the first model, the domain is represented by a cross-section of the geometry, while in the second model, it is represented by an axial-section of the geometry and, thus, the BHE ...

Interpretation of Measurements with Novel Thermal Conductivity Sensors Suitable for Space Applications

N. I. Kömle[1], G. Kargl[1], E. Kaufmann[2], J. Knollenberg[2], and W. Macher[1]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]DLR Institut für Planetenforschung, Berlin, Germany

Thermal conductivity of near surface soil layers is a key parameter for understanding the energy balance of planetary bodies. To measure this property, heated needle sensors are frequently used in field and laboratory applications. To adapt this type of sensors for application on space missions, various modifications have to be implemented. An example for such a modified sensor is the so ...

Modeling Spectral Emission Phenomena in Beryllium Plasma Using COMSOL Multiphysics

C. Gavrila[1], C. P. Lungu[2], and I. Gruia[3]
[1]Technical University of Civil Engineering Bucharest, Romania
[2]National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
[3]University of Bucharest, Faculty of Physics, Bucharest, Romania

The purpose of this paper is to present a numerical modeling of plasma phenomena in beryllium emissions using COMSOL Multiphysics software. The Beryllium films were deposited on mirror polished fine grain graphite substrates using the Thermionic Vacuum Arc (TVA) technology available at NILPRP – Magurele, Romania. The developed system for thin film deposition using thermionic vacuum arc (TVA) ...

Impulsive Thermomechanics of hypersonic surface phononic crystals

F. Banfi[1], D. Nardi[2], and M. Travagliati[3]
[1]Dipartimento Matematica e Fisica, Università Cattolica, Brescia, Italy
[2]JILA, University of Colorado at Boulder, Boulder, Colorado, United States
[3]Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy

Ultrafast optical generation of pseudosurface acoustic waves is investigated in hypersonic surface phononic crystals. The thermomechanics is modeled from first-principles to follow the initial impulsive heat-driven displacement in the time domain. Spectral decomposition of the displacement over the surface phononic crystal eigenmodes outlines asymmetric resonances featuring the coupling between ...