Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Equation-Based Modeling: The Structural Contact Problem Solved by The Velocity Approach

O. Toscanelli, and V. Colla
Scuola Superiore S. Anna, Pisa, Italy

The contact between infinitely rigid body and deformable part is studied using the velocity as a dependent variable. A simple forging case is evaluated. The velocity approach is realized by means of using COMSOL with the Equation-Based Modeling. The contact model evaluated in this work is suitable to model the forging process. For a given mesh and element it is possible to choose the optimum ...

Space Charge Compensation of Negative Ion Beams

M.Cavenago[1], and P. Veltri[2]
[1]INFN-LNL, Legnaro, PD, Italy
[2]Consorzio RFX, Padova, Italy

Neutral Beam Injectors for ITER require development of negative ion sources and beams with carefully reduced beam divergence. In the accelerator this is compensated by the focusing due to the fringe effect of the electric field, while in the drift region, where the beam is propagating without further acceleration, a background positive charge is required to assure beam transmission with small ...

FEM-Investigations Of Superconductor/Ferromagnet Heterostructures: A Compliance Test Between Various Models

P. Krüger[1], F. Grilli[1], Y. Genenko[2], and R. Brambilla[2]
[1]Karlsruhe Institute of Technology, Germany
[2]Technical University Darmstadt, Germany, ERSE Spa, Milan, Italy

In recent years, a number of numerical and finite-element-methods in particular - some implemented in COMSOL - have been developed to investigate various properties of superconducting materials. Following converse conclusions by different models regarding similar physical phenomena, the consistency of these models has been of increased interest. In this publication the accordance of an ...

Numerical Inversion of Surface Deformation at Long Valley Caldera (California) By Using 3D Mechanical Models

S. Pepe, P. Tizzani, and A. Manconi
IREA-CNR, Napoli, Italy

We use 3D numerical models to analyze the ground deformation observed at Long Valley Caldera (LVC) between 1992 and 2000 via space-based geodetic techniques. More specifically, we implement a complex model that includes the topography and the material heterogeneities information of LVC. The 3D heterogeneous models are implemented of COMSOL models in a Genetic Algorithm optimization to constrain ...

Evaluation of CO2 Leakages From An Aquifer Storage

A. Thoraval[1], R. Farret[2], A. Cherkaoui[2], and P. Gombert[2]
[1]INERIS, Nancy, France
[2]INERIS, Verneuil, France

This paper presents preliminary estimations of CO2 overpressure into the reservoir and CO2 leakage through the caprock and the overburden. A simple, two-phase flow model in porous media based on Darcy’s law was used, in order to explore easily long time periods. The models produced by COMSOL Multiphysics allow sensitivity studies and preliminary evaluations of the relations between CO2 leakage ...

Modelling of Selected Electromechanical Phenomena in the DC Machine

M. Antczak, P. Idziak, and W. Lyskawiski
Poznań University of Technology, Poland

The paper presents the results of the experiment consisting in determination of the influence of the magnetic field on deformations of the stator and the rotor of the DC motor. The numerical model of the motor for the frameless DC machine of the G series has been elaborated. Real material properties and the phenomenon of the magnetic circuit saturation have been taken into consideration. The ...

Optimisation Of Filament Geometry For Gas Sensor Application

S. Gidon, M. Brun, and S. Nicoletti
CEA Minatec, Optronic Department, Grenoble, France

Monitoring of indoor CO2 concentration is of particular interest to detect room occupancy in order to optimise power consumptions of building. One technological approach is to use optical detection using specific absorption lines of CO2 molecules in the infrared domain close to 4.2 μm. Key features for a wider use in public and private buildings are power consumption and price. Such optical ...

Simulation of Interaction of Low-Temperature Plasma with Immersed Solids

V. Hrubý, and R. Hrach
Department of Surface and Plasma Science, Charles University, Prague, Czech Republic

The computer simulation with COMSOL Multiphysics has become a widely used technique for the study of various problems in the field of plasma physics. Despite the increasing performance of computers, fully three-dimensional particle simulations still have got extremely high demands on hardware and computer time. Although many problems could be solved by fluid models, results obtained by these ...

Comparative Study of an Open Waveguide.Application to Deconvolution of a Magnetic Probe in Near-Field Zone

A. Saghir, J.W. Tao, and C. Avram
INP, Laplace site Enseeiht, Toulouse, France

We present here our work on deconvolution of a magnetic probe to mesure electromagnetic emissions in near-field zone. To achieve this work,we have chosen a rectangular waveguide (WR90) as a radiating structure.Theoritical near-field is simulated using a FEM software (COMSOL) and also obtained by using a program based on transverse operator method (TOM), that lead to a very good field ...

Experimental and Numerical Fluid Flows Study on a X-Millichannel

C. Wolluschek[1], F. Etcheverry[2], M. Cachile[2], and J. Gomba[3]
[1]Mecánica de Fluidos e Ingeniería Térmica, Centro tecnológico Cemitec, Noáin, Navarra, Spain
[2]Grupo de Medios Porosos, Facultad de Ingeniería, UBA, Buenos Aires, Argentina
[3]Instituto de Física Arroyo Seco, UNCPBA, Tandil, Argentina.

In this work, a COMSOL model that predicts velocity and concentration fields inside an X-shaped millichannel (4 mm diameter) is developed. Water and a ink low concentration are injected simultaneously in the two inlets of the device. The mass transfer problem is solved by a Fickian model (solute concentration is low compared with the solvent). The parameters in this study are: initial inlet mass ...