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Presentation overview

• Open-cell metal foam, heat exchanger 

• Physical model and governing equations

• Numerical results

• Conclusions



• Open-cell metal foams (or metal sponge) can be used
to enhance heat transfer in many applications, such
as cryogenic heat exchanger, compact heat sinks and
heat exchanger.

• They are characterized by a cellular structure
represented by a metal (or a metal alloy) and
connected gas voids inside.

• Due to their intrinsic high porosity and large specific
surface area, these materials are considered to have
very promising properties to improve efficiency and
minimize the required weight and volume of novel
industrial heat exchangers.
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Open-cell metal foam, compact heat exchanger  
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Physical model: geometry of the heat exchanger section
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dimensions are given in mm
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Physical model: open-cell metal foam
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Aluminium sponge 1

Length l  of the unit cube edge  2.60 mm

Radius R of the inner cylinders 1.20 mm

Length l of the inner cylinders 2.60 mm

Minimum thickness eh of the cell 
strut 

0.10 mm

Minimum thickness 2eh of a strut 
between two consecutive cells

0.20 mm

Pore density ~ 10 pores per linear inch 

Volume of the pores Vp 1.25721x10-6 m3

Volume of the solid struts Vs 1.4889x10-7 m3

Porosity ε= Vp / Vs 89.41%

Surface area of the struts Ss 8.13x10-4 m2

Total volume of the aluminium 

sponge Vf
1.4061x10-6 m3

Specific surface area of the 

aluminium sponge Ss/ Vf
578 m2/ m3

Aluminium sponge 2

Length l  of the unit cube edge  2.60 mm

Radius R of the inner cylinders 1.25 mm

Length l of the inner cylinders 2.60 mm

Minimum thickness eh of the cell 
strut 

0.05 mm

Minimum thickness 2eh of a strut 
between two consecutive cells 

0.1 mm

Pore density
~ 10 pores per linear 

inch 

Volume of the pores Vp 1.29379x10-6 m3

Volume of the solid struts Vs 1.1231x10-7 m3

Porosity θ= Vp / Vs 92.01%

Surface area of the struts Ss 6.69x10-4 m2

Total volume of the aluminium 

sponge Vf
1.4061x10-6 m3

Specific surface area of the 

aluminium sponge Ss/ Vf
476 m2/ m3
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Computational work : governing equations

dimensions are given in mm
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Heat is transferred from a laminar, incompressible stream of 
hot water to a laminar, compressible flow of cold air by:

• convection and diffusive phenomena in the fluids 
• conduction in the solid regions of the system, i.e., walls 

of device and metal sponge

Steady state compressible fluid flow and heat transfer 
through the 3D  heat exchanger section (Mass and Linear 
Momentum Conservation; Thermal Energy Conservation) 

Comsol Multiphysics® 5.4: Heat Transfer and CFD modules

Conjugate Heat Transfer physics interface 
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Computational work: hypothesis of the model
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dimensions are given in mm

Boundary conditions for the fluid flow:
• at the inlet, a normal velocity Uin,w of 0.05 m/s for the 

water flow and three different values (0.5 m/s, 1 m/s 
and 1.5 m/s) for the normal velocity Uin,a of the cooling 
air

• at the outlets, a null gauge pressure
• conditions of symmetry on the top of the water channel 

and the bottom of the air flow 
• conditions of open boundary (normal stresses equal to 

zero) on the side walls of the foam section
• boundary condition of no slip on the rest of the solid 

surfaces, including the solid walls of the open-cell foam 

Boundary conditions for the heat transfer:
• at the inlets, temperature Tin,a of 300 K for the air 

inflow and temperature Tin,w of 330 K for the water 
inflow 

• at the outlets  for both fluids (q is the heat flux 
and n is the normal direction)

• conditions of symmetry on the bottom of the heat 
exchanger section

• conditions of thermal insulation on the rest of the 
surfaces  

at the outlets, 
0  qn

b) at the outlets, 
0  qn

0  qn

• Model is 3D  

• Flow is stationary, laminar, compressible 
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Computational work: hypothesis of the model
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dimensions are given in mm

at the outlets, 
0  qn

b) at the outlets, 
0  qn

To preserve the flow structure in the upstream 
and downstream of the heat exchanger, the 
computational domain is extended of 20 mm 
in the x direction (10 mm+10 mm)
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Computational work : experimental values

dimensions are given in mm
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Magnitude Value

Inlet cross sectional area 
Acs = (a x b) 

5.408x10-5 m2

Wetted perimeter of the flow 
channel Lp=2 (a + b)

3.120x10-2 m

Hydraulic diameter 
Dh =4Acs / Lp

6.933x10-3 m

Temperature at inlet Tin,a 300 K

Density ρ (at 1atm) 1.1614 kg/m3

Dynamic viscosity μ (at 1atm) 1.846x10-5 Pa∙s

Heat capacity at constant 
pressure cp (at 1atm)

1.007 kJ/(kg∙K)

Prandtl number Pr (at 1atm) 0.707

Inlet velocity Uin,a

0.5 m/s
1 m/s
1.5 m/s

Mass flow rate                   𝑚 =
𝜌𝑈𝑖𝑛,𝑎𝐴𝑐𝑠

3.140x10-5 kg/s
6.281x10-5 kg/s 
9.421x10-5 kg/s

Reynolds number 
Reh= ρ Uin,w Dh / μ

218
436
654

Hydrodynamic entry length

x fd,h ≈ 0.05 Reh Dh

75.6 mm
151.2 mm
226.8 mm

Thermal entry length

x fd,t ≈ 0.05 Reh Dh Pr

53.5 mm
106.9 mm
160.3 mm

Air inflow at 300 K 

Magnitude Value

Inlet cross sectional area 
Acs = (c x d) 

5.408x10-5 m2

Wetted perimeter of the flow 
channel Lp=2 (c + d)

4.680x10-2 m

Hydraulic diameter 
Dh =4Acs / Lp

4.622x10-3 m

Temperature at inlet Tin,w 330 K

Density ρ (at psat) 984 kg/m3

Dynamic viscosity μ (at psat) 0.489x10-3 Pa∙s

Heat capacity at constant 
pressure cp (at psat)

4.184 kJ/(kg∙K)

Prandtl number Pr (at psat) 3.15

Inlet velocity Uin,w 0.05 m/s

Mass flow rate                   𝑚 =
𝜌𝑈𝑖𝑛,𝑤𝐴𝑐𝑠

0.266x10-2 kg/s

Reynolds number 
Reh= ρ𝑈𝑖𝑛,𝑤Dh / μ

465

Hydrodynamic entry length

x fd,h ≈ 0.05 Reh Dh

107.5 mm

Thermal entry length

x fd,t ≈ 0.05 Reh Dh Pr 338.5 mm

Water inflow at 330 K 

Solid walls of device and metal 
sponge: 

aluminium alloy Al 6063-T83 
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Solution with Comsol Multiphysics 5.4

• free tetrahedral volumes,  fine
• boundary layers on the solid walls, using 

default values of the software

the number of degrees of freedom is approximately 8.5x106 

plus 
5x105 internal DOFs 

Parameter Size 

maximum element 
size 

4.97x10-4

mm 
minimum element 
size

9.37x10-5

mm 
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In the following, the computational results are displayed for the aluminium sponge 2 
with (porosity of 92.01%) and setting, at the air cooling inlet, a velocity Uin,a of 1.5 
m/s. 

24/09/2019



11

Numerical results: velocity and temperature on a longitudinal plane
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xz surface placed in the middle of the heat exchanger section

z

x
y

Uin,a = 1.5 m/s, Uin,w = 0.05 m/s, Tin,a = 300 K, Tin,w = 330 K , θ = 92.01%.
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Numerical results: velocity and temperature on a vertical plane
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Numerical results: temperature profile in the direction of air flow
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on the intersection of the two central xz and xy planes 
(surfaces placed in the middle of the heat exchanger section)

z

x
y

Uin,a = 1.5 m/s, Uin,w = 0.05 m/s, Tin,a = 300 K, Tin,w = 330 K , θ = 92.01%.
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Numerical results: temperature profiles in the y vertical direction
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on a longitudinal plane placed in the middle (z=0.026m) of the heat exchanger section

z

x
y

Uin,a = 1.5 m/s, Uin,w = 0.05 m/s, Tin,a = 300 K, Tin,w = 330 K , θ = 92.01%.

x= 0.0135 m  x= 0.0328 m 

inlet region outlet region 
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Numerical results: velocity profiles in the y vertical direction
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on a longitudinal plane placed in the middle (z=0.026m) of the heat exchanger section

z

x
y

Uin,a = 1.5 m/s, Uin,w = 0.05 m/s, Tin,a = 300 K, Tin,w = 330 K , θ = 92.01%.

x= 0.0135 m  x= 0.0328 m 

outlet region inlet region 
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Conclusions

• The numerical findings of the simulations show that the computational model 
developed with COMSOL Multiphysics® is effective for modelling the conjugate 
flow and heat transfer process through a 3D open-cell aluminium foam. 

• The results prove that the energy transfer of the exchanger highly depends on 
the flow structure, taking advantage of the material's high porosity and large 
specific surface area. 

• The computational model is able to capture the main properties of the coupled 
heat and fluid flow and can be considered a valid approach to evaluate open-cell 
metal foams’ performance for heat transfer applications. 

• According to these results, we foresee to carry out developments of the 
modeling work by using CAD of real open-cell foams and evaluating the 
efficiency of heat exchangers in terms of pressure drop and transferred energy.  
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