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1. Introduction 

 
Nerve injuries or breakage caused by bullet wounds or 

accidents often lead to loss of sensitivity, or motion, or 

both, in the injured organ. The human body has 

inherent mechanism to repair such injured or broken 

nerves. Fibers emerge from the ends of the broken 

nerve and join to recover the nerve. However, when 

the gap between the broken nerve ends is large, 

misalignment of the rejoining fibers can hinder the 

healthy recovery of the broken nerve. Hence, in order 

to assist the recovery of such nerves, external support 

is provided in the form of surgical implants known as 

nerve regeneration scaffolds or Tissue Engineered 

Nerve Guides (TENGs) [1, 2]. These sleeve-like 

structures often have embedded drugs and nutrients 

and are typically porous to allow the supply of drugs 

and nutrients to the recovering nerve ends. They not 

only provide alignment to the re-growing nerve fibers, 

but also provide mechanical support to it. Fig. 1 shows 

a typical TENG. Moreover, in order to avoid surgery 

for the removal of these TENGs after the complete 

recovery of the nerve, biodegradability is a desirable 

property of the scaffold. Ideally, the degradation rate 

of the scaffold should equal the rate of recovery of the 

nerve. 

 
Figure 1. A typical nerve guidance channel, [2]. 

 

Thus, the design of these nerve regeneration scaffolds 

requires a careful study of their degradation rates and 

how their transport and mechanical properties evolve 

as they degrade. In this paper, we describe a 

mathematical formulation which we have developed 

to describe this complex coupling between the 

chemistry-mechanics-transport of the scaffold 

material, and the FEM implementation of it in 

COMSOL® Multiphysics.  

When inserted in the body, blood and other such 

bodily fluids are expected to flow past the porous 

scaffold. Thus, studying the mechanics of the solid 

also requires the study of fluid-structure interaction of 

the solid and the surrounding base fluid. The base fluid 

also plays an important role in the initiation of the 

degradation reaction through hydrolysis [3]. Thus, the 

reduced mechanism of the degradation chemistry of 

the scaffold is expected to consist of three 

components: the poro-elastic solid scaffold, the 

product of the degradation reaction, and the base fluid. 

Mixture theory is a continuum framework for the 

study of behavior of all the components in a mixture. 

Thus, for the study of our three-component system, we 

choose this mathematical framework for the derivation 

of our governing equations. Previous studies mostly 

focus on the extreme cases in which there is significant 

difference in the order of time scale of diffusion and 

chemistry (c.f. [4, 5]). The asymptotic cases derived in 

these studies are applicable to extreme cases involving 

either very rapid or very slow chemistries. We rather 

derive a more general theory which is applicable to 

any combination of chemistry-diffusion time scales 

and can be later specialized according to the specific 

case. 

In this paper we discuss the COMSOL® Multiphysics 

implementation of the Finite Element Method (FEM) 

based numerical framework based on the derived 

mathematical model. The weak formulation of the 

partial differential equations (PDE)s has been 

implemented using Weak form PDE interface within 

the Mathematics module of COMSOL®. The stability 

and accuracy of the numerical framework is tested 

using the Method of Manufactured Solutions (MMS). 

The paper is organized as follows: Next section 

describes the basics of mixture theory and briefly 

describes the governing equations conditions for the 

fluid-structure interaction and degradation of the 

porous scaffolds. Section 3 describes the COMSOL® 

implementation of the resultant numerical model 

along with a discussion on the accuracy of the 

numerical scheme as tested using MMS. Finally, we 

summarize our important results in the last section. 
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Figure 2. Manufactured Solutions for different variables. (From left to right) Top row: ||𝐯fil𝟏||, ||𝐯fil𝟐||, 𝝓𝒔;  

Bottom row: 𝒑, 𝝓𝟏, ||𝐮𝒔||. 

 

 

2. Mathematical Model 
 

2.1 Basics of mixture theory – kinematics and 

balance laws, [6]: 

For a mixture comprising of N components, we 

assume that all the constituents co-exist at any given 

point in the domain. The mass density of the pure 

constituent a (mass of constituent a per unit volume of 

the constituent) and its mass density as perceived in 

the mixture (mass of constituent a per unit mixture 

volume) are denoted by 𝛾𝑎 and 𝜌𝑎 respectively. The 

volume fraction of a component 𝑎 in the mixture, 

defined as the volume occupied by the component 

divided by the total volume of the mixture, is denoted 

by 𝜙𝑎. The assumption that the constituents of the 

mixture occupy the volume of the mixture, leads to the 

‘saturation constraint’, which is given by, 

∑ 𝜙𝑎
𝑁
1 = 1. (1) 

The relationship between 𝜙𝑎, 𝛾𝑎 and 𝜌𝑎 is given by,  

𝜌𝑎 = 𝛾𝑎𝜙𝑎. (2) 

The velocity of any component a in the mixture is 

denoted by 𝐯𝑎. The balance of mass for any component 

a in the mixture is then given by, 
∂𝜌𝑎

∂𝑡
+ ∇ ⋅ (𝜌𝑎𝐯𝑎) = 𝑐

^

𝑎 , (3) 

where 𝑐
^

𝑎 denotes the rate of production or 

consumption of component a due to chemical 

reactions. 

Balance of momentum equation for the component a 

is given by, 

𝜌𝑎(
∂𝐯𝑎

∂𝑡
+ ∇𝐯𝑎 ⋅ 𝐯𝑎) = ∇ ⋅ 𝖳𝑎 + 𝜌𝑎𝐛𝑎 + 𝐩

^

𝑎, (4) 

where 𝖳𝑎 and 𝐛𝑎 are the stress tensor and body force 

vector for the constituent a. The vector 𝐩
^

𝑎 is the force 

of interaction of the constituent a with all other 

constituents in the mixture. 

 

2.2 Constitutive relations and final form of 

governing equations for a degrading scaffold 

embedded in a fluid bath  

For our mixture comprising of the poro-elastic 

degrading solid, base fluid and degradation product, 

we derived the constitutive forms for 𝖳𝑎 and 𝐩
^

𝑎, to 

obtain the system of governing equations. The product 

of degradation is assumed to be a fluid. Under the 

assumption that the inertia effects can be ignored (i.e. 

acceleration terms can be ignored), the final form of 

the governing equations for the fluids and the poro-

elastic solid are obtained as, 
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𝟎 = −𝜙𝑓∇𝑝 + 𝛾𝑓𝜙𝑓𝐛𝑓 − 𝜙𝑓
𝜇𝑓

𝜅𝑠
𝐯fil𝑓

,  (5) 

𝟎 = −𝜙𝑠∇𝑝 + 𝛾𝑠𝜙𝑠𝐛𝑠 + ∑ 𝜙𝑓
𝜇𝑓

𝜅𝑠
𝐯fil𝑓

2

𝑓=1
+

             ∇ ⋅ 𝖳𝑒 − ∑ 𝑐
^

𝑓𝐯𝑓

2

𝑓=1
− 𝑐

^

𝑠𝐯𝑠,  
(6) 

Here, f denotes fluid components, and s denotes solid.  

The term p denotes the hydrostatic pressure which 

appears in the momentum balance equation of all 

constituents. 𝖳𝑒 denotes the first Piola-Kichhoff stress 

tensor corresponding to the elastic stress tensor for the 

solid. The terms 𝜇𝑓 and 𝜅𝑠 are the fluid viscosity and 

permeability of the porous solid, respectively. Another 

term that appears in Eqs. (5) and (6) is 𝐯fil𝑓
, which is 

known as the ‘filtration velocity’ for fluids, and is the 

relative velocity of the fluid with respect to the solid, 

scaled by the fluid volume fraction, and is given by,  

𝐯fil𝑓
= 𝜙𝑓(𝐯𝑓 − 𝐯𝑠). (7) 

The subscript f takes values 1 and 2 and for the base 

fluid and degradation product, respectively. We model 

the elastic response of the solid as Neo-Hookean. Eqs. 

(5) and (6) are written in Eulerian form. Since our 

problem involves a solid and fluids, these equations 

were converted into an arbitray Lagrangian- Eulerian 

framework and were then implemented in an FEM 

model. The model has similar structure for the non-

reactive flow through porous media model as 

presented in [7]. 

 

3. FEM model implementation using 

COMSOL® Multiphysics 

 
3.1 Problem setup 

Our system of equations for the three-component 

mixture involves 8 PDEs: 3 mass balance equations, 3 

momentum balance equations and a kinematic 

relationship between solid displacement and solid 

velocity (which is essential for the term involving the 

term 𝖳𝑒). We solve these 8 equations simultaneously 

for 8 variables: velocities for each of the three 

constituents, volume fractions (or densities) of each 

constituent, solid displacement and pressure. 

The Mathematics module of COMSOL® Multiphysics 

provides an excellent framework for the testing of 

FEM-based numerical frameworks. We tested our 

FEM model with the help of ‘Method of Manufactured 

Solutions’ (c.f. [8]) on a 2D square domain of side 1m. 

‘Solutions’ were assigned to each variable, and the 

corresponding Dirichlet boundary conditions and 

source terms were derived for every variable in the 

system. The resultant system of equations was solved 

with the derived boundary conditions, and the 

solutions were tested against the imposed 

manufactured solution to test for accuracy of the 

numerical system. The manufactured solutions for 

various variables are as follows: 

𝐮𝑠 = 𝑢𝑠sin (
2𝜋𝑡

𝑡0
)[cos (2𝜋

𝑥+𝑦

𝐿
)𝐢

^

+ sin (2𝜋
𝑥−𝑦

𝐿
)𝐣

^

],  

𝐯fil1
= 𝑣fil1

cos (
2𝜋𝑡

𝑡0
)[sin (2𝜋

𝑥2+𝑦2

𝐿2
)𝐢

^

+ cos (2𝜋
𝑥2−𝑦2

𝐿2
)𝐣

^

],  

𝐯fil2
= 𝑣fil2

cos (
2𝜋𝑡

𝑡0
)[cos (2𝜋

𝑥2

𝐿2
)sin (2𝜋

𝑦2

𝐿2
)𝐢

^

+ sin (2𝜋
𝑥2−𝑦2

𝐿2
)𝐣

^

],  

𝑝 = 𝑝sin (
2𝜋𝑡

𝑡0
)sin (2𝜋

𝑥+𝑦

𝐿
),  

𝜙1 = 𝜙
ˇ

1 + 𝜙
1

cos (
2𝜋𝑡

𝑡0
)cos (2𝜋

𝑥+𝑦

𝐿
),  

𝜙𝑠 = 𝜙
ˇ

𝑠 + 𝜙
𝑠

sin (
2𝜋𝑡

𝑡0
) sin (2𝜋

𝑥+𝑦

𝐿
).  

The constant values are: 𝐿 = 1m and 𝑡0 = 1s. All the 

simulations were run as ‘time dependent’ for a total 

time of 1s. Referring to Eqs. (5) and (6), the values of 

fluid viscosities for the base fluid and degradation 

product, 𝜇1 and 𝜇2; and solid permeability, 𝜅𝑠 were 

chosen as 0.001 kg/s.m, 0.0015 kg/s.m and 0.001m2 

respectively. In order to capture various degradation 

rates, various combinations of the constants 𝜙
ˇ

1, 𝜙
ˇ

𝑠, 𝜙
1
 

and 𝜙
𝑠
 were chosen, as given in Table 1. Fig. 2 shows 

the typical nature of manufactured solutions that were 

employed for various variables. The solution is 

obtained using a mesh of size h = L/128, at time = 0.7s. 

We chose a uniform swept mesh for our analysis, with 

square elements. For testing the accuracy, we used a 

parametric sweep over the mesh size. The mesh sizes 

we used were 1/2n m, where the n was sequentially 

chosen as 8, 16, 32, 64, 128. 

Table 1: Constants for manufactured solutions of volume 

fractions. 

 

3.2 Solver and shape function specifications: 

For the time stepping, we implemented implicit time 

marching using the variable-order variable time step 

backward difference formula (BDF) (c.f. [9]). The 

BDF order was restricted between 2 and 5, and a 

maximum time step size of 0.001s was imposed. The 

resultant non-linear system of equations for every time 

step was solved using Newton's method (with no 

damping). For the termination criterion for the 

iterations, we used minimum relative tolerance of 

0.001. The linear solver PARDISO ([10-12]) was 

employed for the linear system of equations. Since the 

numerical system is expected to suffer from stability 

issues, the Brezzi-Babuska condition ([13, 14],) was 

invoked, wherein two combinations of shape functions 

for the vectors (velocities and solid displacement) and 

pressure were chosen: 

 

Case 𝜙
ˇ

1 𝜙
1
 𝜙

ˇ

𝑠 𝜙
𝑠
 

1 0.2 0.1 0.1 0.1 

2 0.35 0.15 0.3 0.1 

3 0.2 0.1 0.5 0.2 

Excerpt from the Proceedings of the 2019 COMSOL Conference in Boston



Figure 3: L2 and H1 error norms for the case 3 described in Table 1. 

 

• Lagrange quadratic shape functions for 

vectors and Lagrange linear shape functions 

for pressure. 

• Lagrange cubic shape functions for vectors 

and Lagrange quadratic shape functions for 

pressure. 

Lagrange linear shape functions were used for the 

volume fractions. 

 
 

 

4. Numerical results 

 
Results for the numerical problem and parameter 

values described in the previous section are presented 

in this section. The stability of the numerical scheme 

was observed to be dependent on the relative filtration 

velocity with respect to the solid. In order to study the 

stability behavior, the solid displacement amplitude, 

𝑢𝑠 was fixed as 0.01m, and three values of the 

filtration velocity magnitudes, 𝑣fil1
 and 𝑣fil2

 were 

considered: 0.01m/s, 0.1m/s and 1m/s. It was observed 

that stable numerical solutions were obtained, even 

without any additional stabilization terms, for 

filtration velocity magnitudes of 0.01m/s and 0.1m/s. 

Also, the numerical model failed when the volume 

fractions went above a value of 0.8, or below 0.1. 

Without loss of generality, convergence rates (L2 and 

H1 error norms) for the case 1 in Table 1 are shown in 

Fig. 3 for 𝑣fil1
= 𝑣fil2

= 0.01 m/s, and for time = 0.7 

s. The L2 error norms and H1 semi-norms for the 

filtration velocities are around 2 and 1 respectively, 

and for the solid displacement and velocity are around 

2.6 and 2 respectively for both the combinations of 

shape functions. Similarly, the L2 and H1 error norms 

for the volume fractions are around 2 and 1 

irrespective of the combination of shape functions. 

The error norms for pressure, however, are observed 

to be dependent on the order of interpolation function: 

the L2 error norms are around 2 and 3 for Lagrange 

linear and quadratic pressure shape functions 

respectively, whereas the H1 semi-norms are around 1 

and 2 respectively. Similar trends for convergence 

rates are observed for all the other cases in Table 1, 

and for filtration velocity amplitudes of 0.1m/s. For 

the case when 𝑣fil1
= 𝑣fil2

= 1m/s, the convergence 

rates become more erratic, and the convergence 

becomes harder to achieve at higher resolutions. 
 

 

5. Conclusions 
 

In this paper, we present a mathematical formulation 

which we have derived based on principles of mixture 

theory, to capture the bio-degradation of poro-elastic 

polymers and corresponding evolution of their 

mechanical and transport properties. An FEM based 

numerical model has been derived based on the 
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mathematical model. The FEM model has been 

implemented in COMSOL® Multiphysics using the 

Weak form PDE interface of the Mathematics module. 

The model has been tested using the method of 

manufactured solutions for convergence and stability. 

Except for cases when the volume fractions are below 

0.1 or above 0.8, and when the filtration velocities are 

of the order 1m/s and above, for a solid displacement 

magnitude of 0.001m, the FEM model is observed to 

be stable, for two different combinations of shape 

functions which were chosen so as to satisfy the 

Brezzi-Babuska condition. Future research would 

focus on the application of the model to simulate 

scenarios involving insertion of the scaffolds in real 

bio-medical simulations.  

 

References 
 

1. Mahesh C. Dodla, Melissa Alvarado-Velez, Vivek 

J. Mukhatyar, and Ravi V. Bellamkonda. Chapter 69 - 

peripheral nerve regeneration. In Principles of 

Regenerative Medicine (Third Edition), 1223 - 1236. 

Academic Press, Boston, (2019). 

 
2. Ravi V Bellamkonda. Peripheral nerve 

regeneration: an opinion on channels, scaffolds and 

anisotropy. Biomaterials, 27(19), 3515-3518, 2006. 

 

3. Ying Wang, Jingzhe Pan, Xiaoxiao Han, Csaba 

Sinka, and Lifeng Ding. A phenomenological model 

for the degradation of biodegradable polymers. 

Biomaterials, 29(23): 3393-3401, 2008. 

 

4. Xiaoxiao Han and Jingzhe Pan. A model for 

simultaneous crystallisation and biodegradation of 

biodegradable polymers. Biomaterials, 30(3): 423-

430, 2009. 

 

5. Satish Karra and KR Rajagopal. A model for the 

thermo-oxidative degradation of polyimides. 

Mechanics of Time-Dependent Materials, 16(3): 329-

342, 2012. 

 

6. Ray M. Bowen. Theory of mixtures In Continuum 

physics, 3, 1976. 

 

7. Ray M. Bowen. Incompressible porous media 

models by use of the theory of mixtures. International 

Journal of Engineering Science, 18(9): 1129-1148, 

1980. 

 

8. Kambiz Salari and Patrick Knupp. Code verifcation 

by the method of manufactured solutions. Technical 

report, Sandia National Labs., Albuquerque, NM 

(US); Sandia National Labs, 2000. 

 

9. COMSOL Multiphysics® v.5.3 Reference Manual. 

 

10.  Andrey Kuzmin, Mathieu Luisier, and Olaf 

Schenk. Fast methods for computing selected 

elements of the green's function in massively parallel 

nanoelectronic device simulations. In Euro-Par 2013 

Parallel Processing, 533-544, Berlin, Heidelberg, 

2013. Springer Berlin Heidelberg. 

 

11.  Olaf Schenk, Matthias Bollhöfer, and Rudolf A 

Römer. On large-scale diagonalization techniques for 

the anderson model of localization. SIAM review, 

50(1): 91-112, 2008. 

 

12.  Olaf Schenk, Andreas Wächter, and Michael 

Hagemann. Matching-based preprocessing 

algorithms to the solution of saddle-point problems in 

large-scale non-convex interior-point optimization. 

Computational Optimization and Applications, 36(2): 

321-341, Apr 2007 

 

13.  Brezzi, Franco, and Michel Fortin. Mixed and 

hybrid finite element methods. 15, Springer Science 

& Business Media, 2012. 

 

14. F. Costanzo and S. T. Miller. An arbitrary 

Lagrangian-Eulerian finite element formulation for a 

poro-elasticity problem stemming from mixture 

theory. Computer Methods in Applied Mechanics 

and Engineering, 323: 64-97, 2017. 

 

Acknowledgements 
We gratefully acknowledge partial support by the 

National Science Foundation through grant CMMI 

1537008. 

Excerpt from the Proceedings of the 2019 COMSOL Conference in Boston




