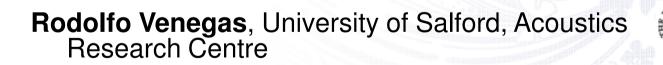


Optimal Design of Slit Resonators for Acoustic Normal Mode Control in a Rectangular Room

Sergio E. Floody, Universidad de Chile, Facultad de Artes, Departamento de Música y Sonología, Licenciatura en Sonido



Felipe C. Leighton, Ingeniería Civil en Sonido y Acústica, Universidad Tecnológica de Chile Inacap

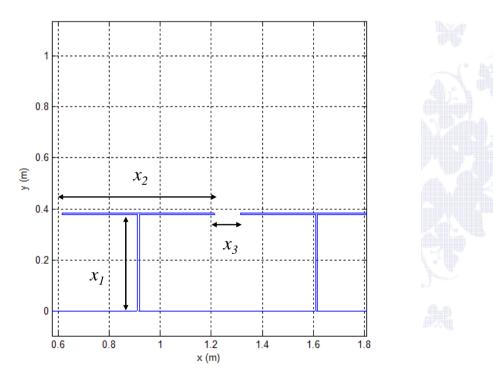
University of Salford A Greater Manchester University

Introduction to the problem

- The sound field in a room is characterized by the interaction between the source and the acoustic properties of the room.
- The room's frequency response depends on the geometry and the materials.
- The objectives of this article are:
 - Decrease the effects of the resonances at low frequencies.
 - Distribute the normal modes of vibration using optimal slit resonators.
 - Compare optimization strategies based on decreasing the fluctuations of the sound pressure or loudness level.

Introduction to the problem

 Slit resonators are composed by a periodic structure of T-like plates. It can be described using three physical dimensions.



Dimensional characteristics of slit resonators

Introduction to the problem

- Two different optimization algorithms are considered
 - Genetic algorithm
 - Differential evolution algorithm.
- A cubical 5.1m-side enclosure with and without slit resonators is considered as a case of study.
- A point source is placed at one corner of the room. The reception point is located at the opposite corner.
- Vertically-oriented slit resonators are considered.
- The sound field is modeled for frequencies ranging from 20 Hz to 200 Hz.

Theory and Governing Equations

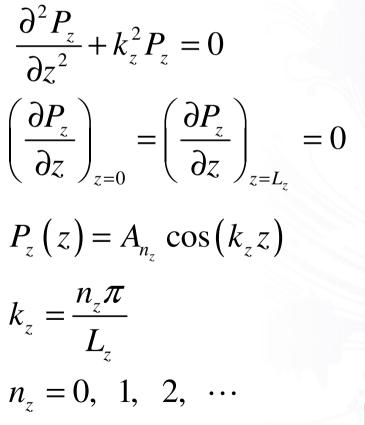
- The stationary solution in the frequency domain has been studied only.
- For harmonic solution, the governing equations is the Helmholtz's equation.

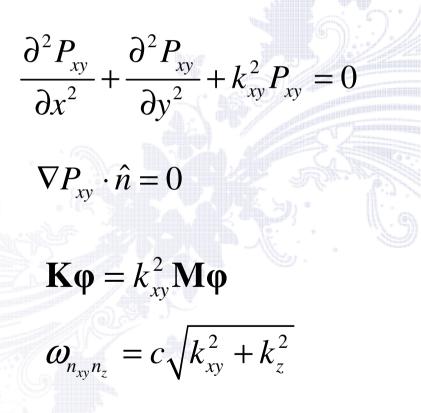
 $\nabla^2 P + k^2 P = 0$ $\nabla P \cdot \hat{n} = 0$

$$P(x, y, z) = P_{xy}(x, y)P_{z}(z)$$

Formulation of the Problem and Application of the

Method of Separation of Variables





Formulation of the Problem and Application of the Method of Separation of Variables

• The sound pressure for any point \vec{r} inside the room enclosure produced by a point source located at \vec{r}_0 of frequency ω

$$p(\vec{\mathbf{r}}, \vec{\mathbf{r}}_{\mathbf{0}}, \boldsymbol{\omega}) = \sum_{n_{xy}}^{\infty} \sum_{n_{z}}^{\infty} \frac{A_{n_{xy}n_{z}}(\vec{r}, \vec{r}_{0}, \boldsymbol{\omega})}{\boldsymbol{\omega}^{2} - \boldsymbol{\omega}_{n_{xy}n_{z}}^{2}}$$

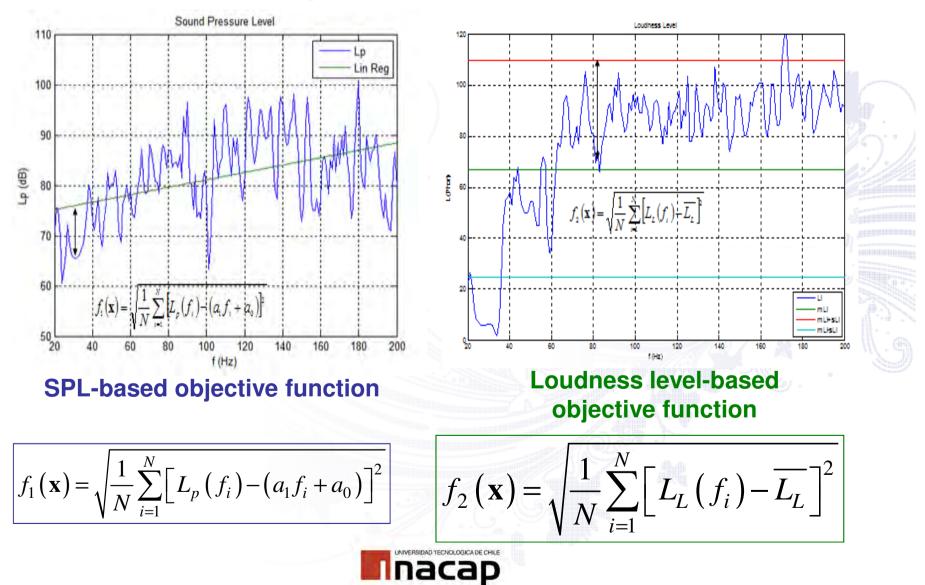
 $A_{n_{xy}n_z}\left(\vec{\mathbf{r}},\vec{\mathbf{r}}_0,\boldsymbol{\omega}\right) = jS_0\rho_0c^2\boldsymbol{\omega}\left(\varphi_{r,n_{xy}}\cos\left(k_z z\right)\right)\left(\varphi_{r_0,n_{xy}}\cos\left(k_z z_0\right)\right)$

Determination of the Loudness Levels Using Neuronal Networks

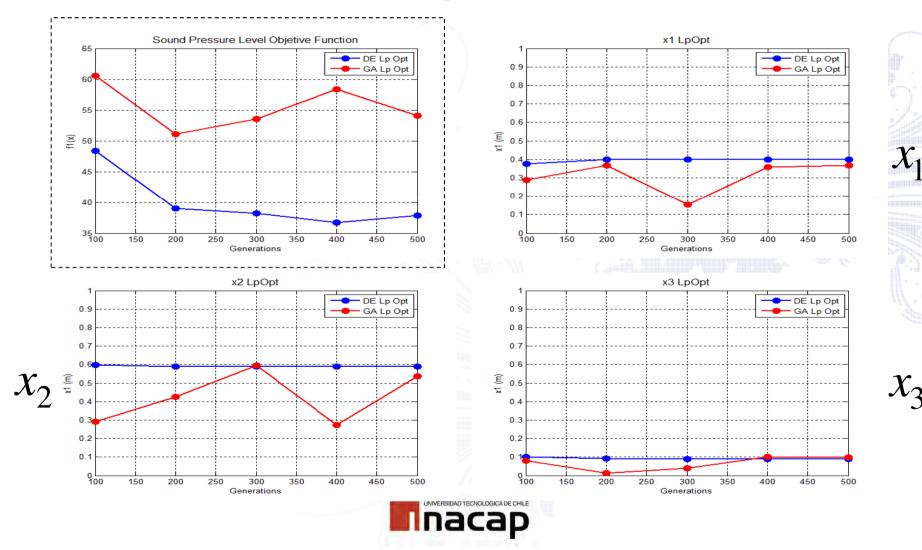
- Inputs: Frequency and sound pressure level
- Output: Loudness level (the sensation that corresponds most closely to the sound intensity of a stimulus)
- A loudness model has been built from equal-loudness-level contours data using an artificial neural network:
 - Quasi Newton Back-propagation (3000 epochs and an objective goal of 10e-5)
 - Three layer feed-forward neural network: 5 hidden neurons and 1 output neuron.
 - Transfer functions: sigmoidal hyperbolic tangent (hidden layer) and linear function (output layer)

Ø

Objective Functions

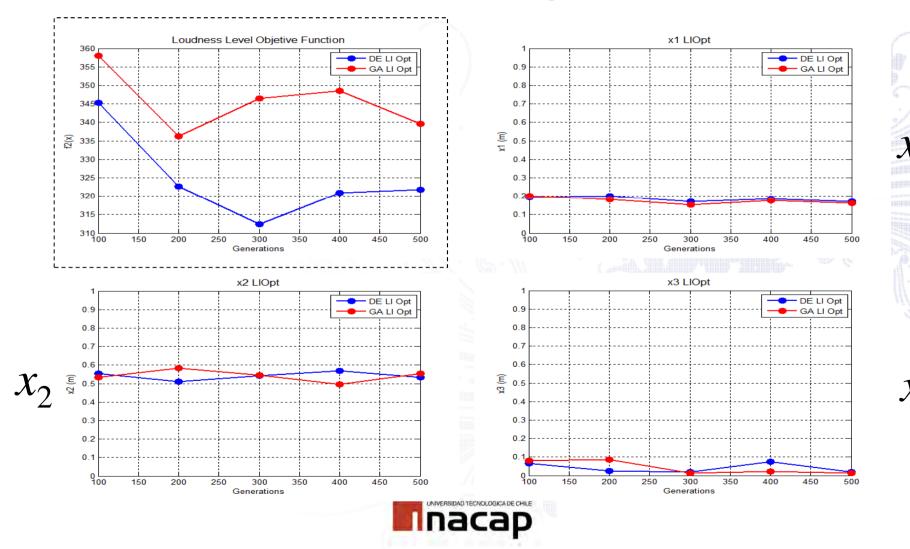


Comparison between GA and DE – optimization using SPL-based Objective Function



Ę

Comparison between GA and DE – optimization using Loudness Level-based Objective Function



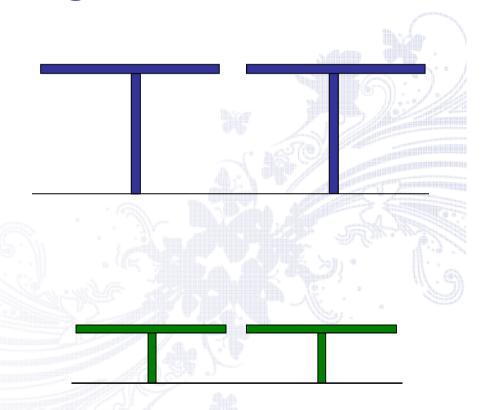
Optimal dimensions and comparison between objective functions – DE – 1000 generations

SPL-based objective function

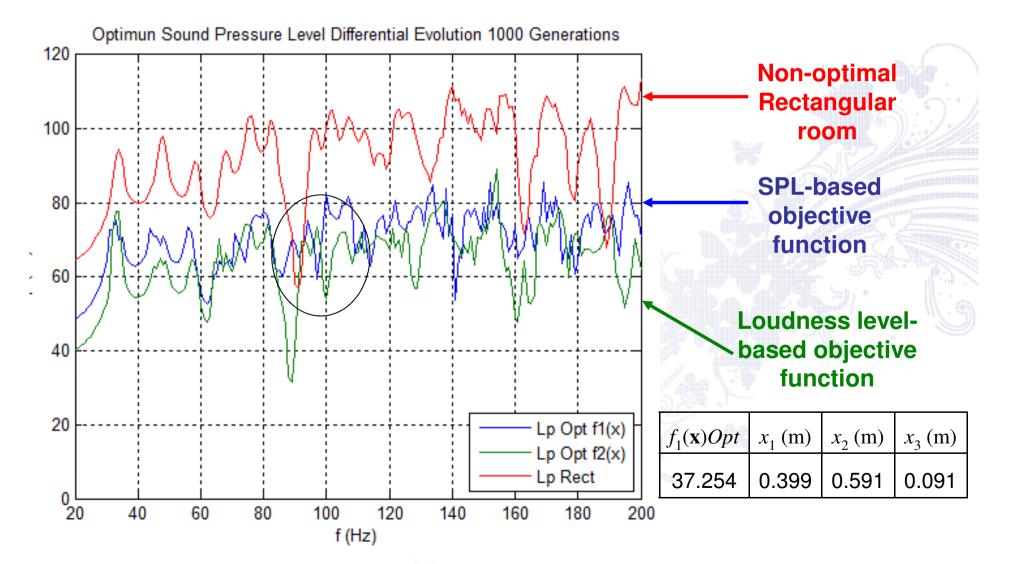
$f_1(\mathbf{x})Op$			
t	$x_{1}(m)$	$x_{2}(m)$	$x_{3}(m)$
37.254	0.399	0.591	0.091

Loudness level-based objective function

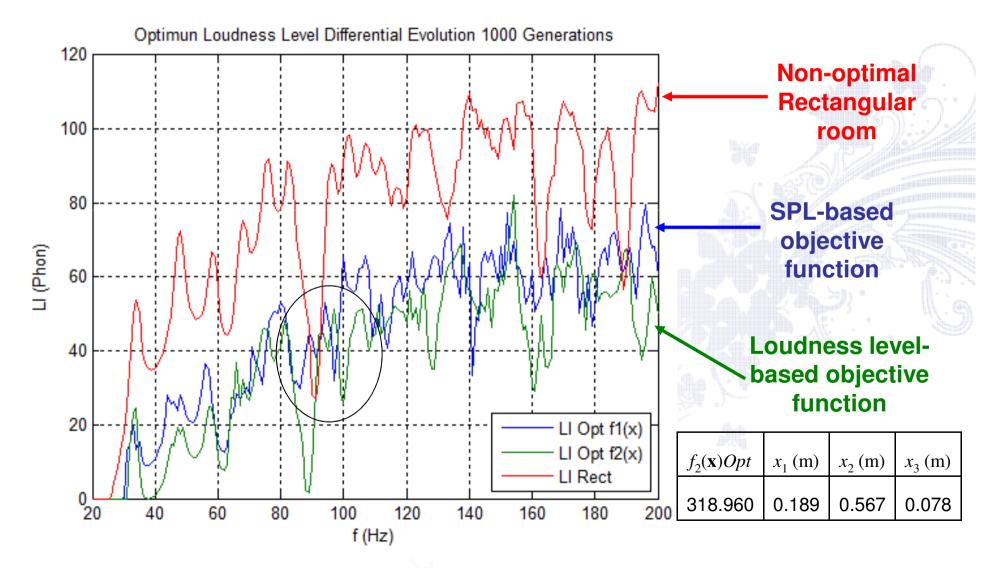
$f_2(\mathbf{x})Opt$	<i>x</i> ₁ (m)	$x_{2}(m)$	<i>x</i> ₃ (m)
318.960	0.189	0.567	0.078



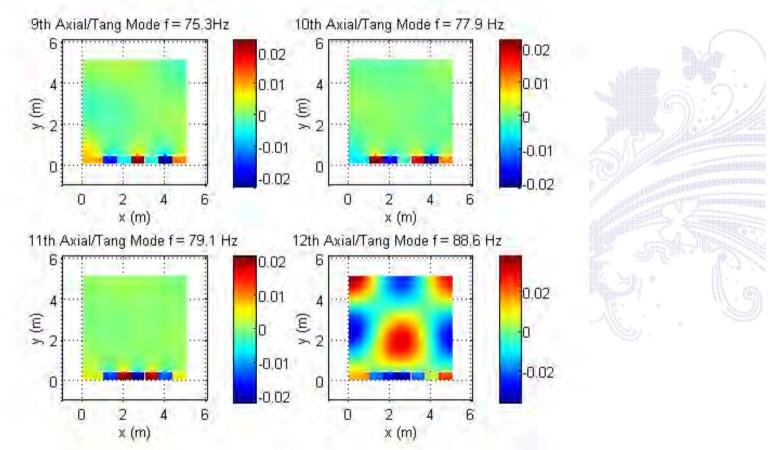
Sound pressure level – DE – 1000 generations



Loudness level – DE – 1000 generations

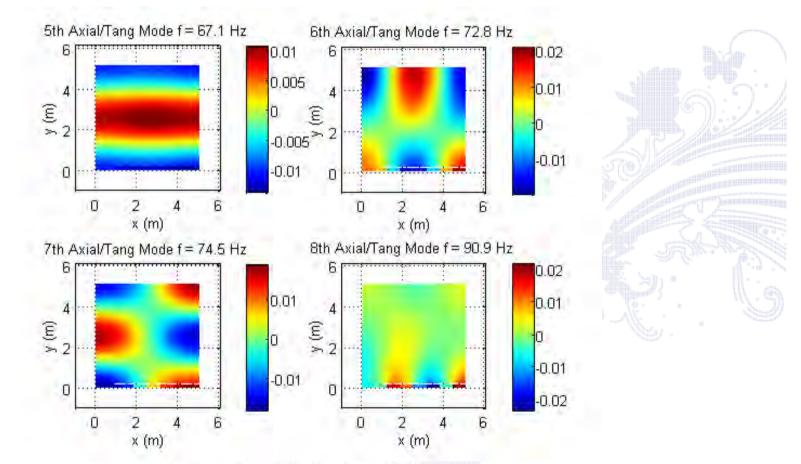


Sound pressure distribution – optimization using SPL-based objective function – DE – 1000 generations



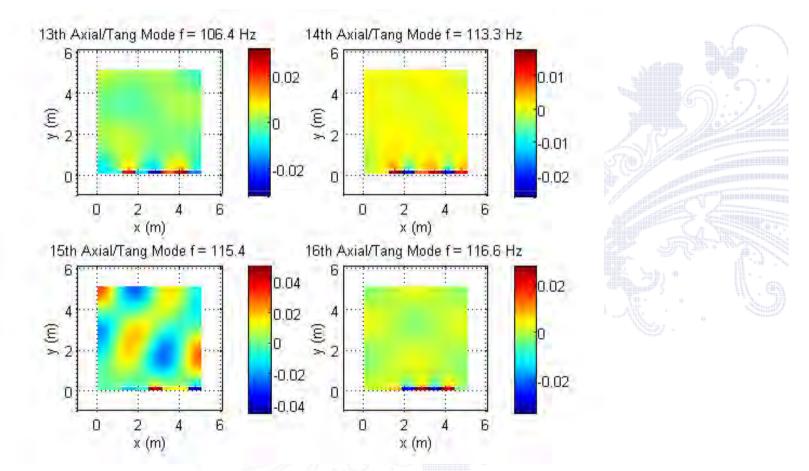
Sound pressure space distribution, for axial/tangential modes $f(n_{xy}, 0)$ - Optimized with objective function based on Lp, $f1(\mathbf{x})$ - Frequency band between 70 Hz and 90 Hz

Sound pressure distribution – optimization using Loudness levelbased objective function – DE – 1000 generations



Sound pressure space distribution, for axial/tangential modes $f(n_{xy}, 0)$ - Optimized with objective function based on L_L , $f_2(\mathbf{x})$. - Frequency band between 70 Hz and 90 Hz -

Sound pressure distribution – optimization using Loudness levelbased objective function - DE – 1000 generations



Sound pressure space distribution, for axial/tangential modes $f(n_{xy}, 0)$ - Optimized with objective function based on *LL*, $f_2(\mathbf{x})$. - Frequency band between 100 Hz and 120 Hz

Conclusions

- The SPL-based objective function:
 - is more efficient at simultaneously decreasing the fluctuations of both sound pressure and loudness levels.
 - tries to eliminate the resonant frequencies lower than 100 Hz.
- The loudness level-based objective function
 - tends to better control the resonances at higher frequencies. In this range, however, the effect of these resonances is less noticeable.

Conclusions

- The spatial distribution of the sound pressure level is more homogenous when optimizing with respect to sound pressure level.
- The results of this paper indicates that the SPLbased objective function is more efficient.
- An investigation on the influence of overall enclosure dimensions and the design restrictions on sound pressure and loudness level distribution is being carried out.

Acknowledgments

R.V. gratefully acknowledges an ORSAS award and the University of Salford research studentship

Thank you very much for your attention. Suggestions and comments are more than welcome!

Acoustics Research Centre University of Salford, UK

Architectural and building acoustics Digital signal processing Outdoor sound propagation Environmental acoustics Virtual acoustic prototypes Acoustics of porous materials

www.acoustics.salford.ac.uk