Model of Combustion Synthesis of Thermoelectric Calcium Cobaltates

Jiri Selig and Sidney Lin Dan F. Smith Department of Chemical Engineering, Lamar University Beaumont,TX

Presented at 2010 COMSOL Conference, Boston, MA

Thermoelectric Materials

Thermoelectric materials can convert temperature difference to an electric potential (or vice versa)

Calcium cobalt oxide (Ca_{1.24}Co_{1.62}O_{3.86}) is a promising thermoelectric material for high temperature applications

Self-propagating High-temperature Synthesis (SHS)

Parameters Governing SHS Reactions

- Adiabatic temperature
 - Theoretical maximum temperature reached with no heat loss to the environment
 - At least 1800 K for reaction to happen
- Pellet size
 - Surface heat loss, cooling
- Fuel ratio (amount of metal powder)
- Thermal conductivity

Experimental Background

 $1.24 \text{ CaO}_2 + 1.62 \text{ Co} \rightarrow \text{Ca}_{1.24}\text{Co}_{1.62}\text{O}_{3.86}$

- Mixed and pressed in to 7/8" pellet, 3 cm long
- Reacted in oxygen
- Once ignited, reaction propagates at 0.27 mm/s
- Temperature in center of the pellet measured by 2 K-type thermocouples

Modeling

Modeling can help to predict results of experiments Useful for scale-up

- How is larger pellet going to affect temperature?
- What is going to happen if the reactant mixture is modified?
- How is the pellet porosity affecting the reaction?
- What are the effects of sample preheating?
- COMSOL 3.5a with Chemical Engineering Module

2-D approximation

Very fine pellet mesh (larger temperature gradient, fast reaction) Triangular mesh - 58302 elements (45875 for the pellet)

Energy Balance

$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot \left(k \nabla T \right) + Q$$

$$-q_{0} = h_{c}(T - T_{\infty}) + \epsilon_{r}\sigma(T^{4} - T_{\infty}^{4})$$
Heat flux
Flow direction
Oxygen
$$q_{ign} = 6x10^{5} \text{ W/m}^{2}, t < 5s$$
Pellet
Pellet
Holder
Convective flux

Heat transfer in porous solid

$$\rho C_p = \epsilon \rho_{gas} C_{p,gas} + (1 - \epsilon) \rho_{solid} C_{p,solid}$$

- Porous pellet affects heat transfer
 - Can easily study the influence of porosity
 - Modified the built in equations
- Thermal conductivity also a function of porosity

$$k_e = k_f \left(k_s / k_f \right)^{A - 0.057 \log(k_f / k_f)}$$
$$A = 0.280 - 0.7571 \log(\epsilon)$$

Mass Balance

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (-D_i \nabla c_i) = R_i - \mathbf{u} \nabla c_i$$

- Assuming reaction is independent of oxygen diffusion
- No oxygen convention inside the pellet

$$\frac{\partial c_{cco}}{\partial t} = R_{cco}$$

- Only for pellet (insulation boundary on pellet, oxygen interface)
- First order reaction

Reaction rate and heat of reaction

Coupling the energy and mass balance

$$\frac{d\eta}{dt} = (1 - \eta)^n \, k e^{\left(\frac{-E}{RT}\right)}$$

First order reaction can be written in terms of concentration

Heat source is a product of enthalpy of reaction with reaction rate

$$Q = \Delta H_r R_{cco}$$

Temperature and Reaction Profile

Large temperature gradient and narrow reaction zone are typical for SHS reactions

Experimental data and model

Effect of thermal conductivity

Pellet size

Increased from 7/8" to 1.5" All equations are the same, only geometry and mesh are modified

Conclusions

- COMSOL Multiphysics can be used to model SHS reaction
- SHS reactions are very sensitive to thermal conductivity
 - Reaction front movement
- Model predicts that large pellet diameter results in slower cooling rate
- Things to add: O₂ diffusion, pellet expansion