

Control of Technological and Production Processes Modeled by COMSOL Multiphysics as Distributed Parameter Systems

G. Hulkó, C. Belavý, G. Takács*, P. Zajíček

S T U • •

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
-

Thank you for having me in your wonderful city of Bangalore!

(and thanks for Emirates airline to lose my luggage with my laptop, suit and product samples – then eventually finding it... :-))

s т и • •

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
-

Aim and motivation

- COMSOL Makes possible to easily model intricate coupled physics over complex spatial structures
- Exponential development of computing power allows to model more and more complex shapes and phenomena using FEM

But how did control theory and practice follow and adapt to this amazing development?

- S T U · · SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Aim and motivation

As it turns out...

Very poorly.

Ref

s т и • •

- SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

11/18/2010 4

G(s)

General practice in control

- Use MIMO structures with lumped input
- Consider discrete points in the output
- The control synthesis is done *exclusively* in the time domain
- Essentially neglecting the spatial domain and properties of systems

Now how can we change this?

s т u • •

- SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Distributed Parameter Systems

• Use instead lumped input and distributed parameter output systems (LDS)

Input is {U_i(t)}_i, output is Y(x,t), with x=x,y,z spatial coordinates

= Distributed parameter systems (DPS)

- **s т u •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
 - Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Controlled DPS

 Zero order hold units couple the lumped input vector to the DPS output – this is the "HLDS" unit:

 Distributed parameter step responses are used to decompose HLDS dynamics into time and space components:

$\left\{ H H_{i}(\mathbf{x},k) \right\}_{i}$

- **s т u •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
 - Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Controlled DPS

- To each partial particular step response a discrete transfer function is assigned: $\{ H H_i(\mathbf{x}_i, k) \}_i \rightarrow \{ SH_i(\mathbf{x}_i, z) \}_i$ = **time componets** of LDS dynamics.
- Reduced partial particular step responses in steady-state are the **space components** of LDS dynamics: $\{H HR_i(\mathbf{x},\infty) = H H_i(\mathbf{x},\infty)/H H_i(\mathbf{x}_i,\infty)\}_i$
- S T U · · SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Controlled DPS: schematic idea

Controlled DPS in practice

- Characteristics {H H_i(**x**,k)}_i are obtained via **COMSOL Multiphysics**
- Identification of {SH_i(x_i,z)}_i and control synthesis is done in Matlab using our tool:

Distributed Parameter System Blockset for Matlab and Simulink

which is an official third party product of The MathWorks Corporation.

- **s т u •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Controlled DPS in practice

Developed by the IAMAI of the Slovak University of Technology in Bratislava, DPS Blockset is an official third party product of The MathWorks, Inc.

Control any DPS by the:

Distributed Parameter System Blockset for Matlab and Simulink

- **s т u •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
 - Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

The DPS Blockset is designed for engineers, researchers, and students who deal with dynamics and control of real world phenomena and processes. **Platforms:** Windows

engineering methodology for DPS control.

MathWorks products required: MATLAB, Simulink, Control System Toolbox, Partial Differential Equation Toolbox, Robust Control Toolbox, System Identification Toolbox

11/18/2010

11

Where can we use DPS control

- As it turns out most real-life phenomena are better controlled as distributed parameter systems – COMSOL Multiphysics is an excellent companion for that...
- A couple examples which are possible to be modelled using COMSOL Multiphysics and for which DPS control is an excellent choice:
- **s т u •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
 - Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

DPS Control: environmental

Pollution control of city & metropolitan agglomerations:

Groundwater remediation:

DPS Control: nuclear & TOKAMAK

Plasma control in experimental TOKAMAK

Nuclear reactor:

DPS Control: much more...

• You may design distributed parameter system controllers for anything which

-Can be modeled via COMSOL

- -Produces transient (step) results
- Numerous other uses...

Let us now explain the process

on an easy example.

- **s т u •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
 - Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Easy example: melting furnace

- To demonstrate the process we will use a glass melting furnace
- 4 heating zones
- Distributed output
- Control aim: uniform temperature profile according to reference throughout the furnace resulting in consistent product quality, with minimal economic and environmental impact
- **s т u •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Example: glass melting furnace

18

How to design a controller?

Control design for such a DPS system essentially a two step process:

- 1. Use **COMSOL Multiphysics** to identify a system model based on a mixed numerical-experimental approach resp. parametric model tuning.
- 2. Based on the numerical model use the **DPS Toolbox** for controller design, synthesis and simulation
- TU · · SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Modeling and identification

- Use COMSOL Multiphysics to get steady state responses in all lumped input zones: $\{H H_i(\mathbf{x}_i, k)\}_{i=1,4}$
- For the glass furnace that is a partial step change in fuel input (heat) in:

```
Zone 1.
(...)
Zone 4.
```

s т u • •

- SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Furnace: zone 1 heating

s

21

Furnace: zone 1 heating

S T U · ·

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
- • COMSOL 2010, Bangalore, India (29-30. Oct.)

11/18/2010 22

Furnace: zone 2 heating

s

23

Furnace: zone 2 heating

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
- • COMSOL 2010, Bangalore, India (29-30. Oct.)

11/18/2010 24

Furnace: zone 3 heating

s

25

Furnace: zone 3 heating

s т и • •

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

11/18/2010 26

Furnace: zone 4 heating

s

27

Furnace: zone 4 heating

s т U • •

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
- • COMSOL 2010, Bangalore, India (29-30. Oct.)

11/18/2010 28

The result of identification:

• Discrete transfer functions to input U₁:

 $\left\{ SH_{i}(\mathbf{x}_{i},z) \right\}_{1} = \frac{1,329.10^{8}z^{2} + 5,072.10^{5}z^{2} + 365.6}{1,901.10^{8}z^{3} + 2,731.10^{6}z^{2} + 4284z + 1}$

(...) similarly for all for i=1...4

 Further reduced DPS step responses in steady-state are defined

 $\{H HR_i(\mathbf{x}, \infty) = H H_i(\mathbf{x}, \infty) / H H_i(\mathbf{x}_i, \infty)\}_{i=1,4}$ as space components of investigated controlled system dynamics.

- **s т и •**
 - SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

DPS control of the furnace

• • • COMSOL 2010, Bangalore, India (29-30. Oct.)

DPS Toolbox: control loop

- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

DPS Toolbox: simulation

Detailed simulation and fine tuning of DPS control = ready to implement!

S T U •

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

DPS Toolbox: simulation

Reference quantity:

Control progress:

t=15 min

s т u •

- Faculty of Mechanical Engineering
- • COMSOL 2010, Bangalore, India (29-30. Oct.)

t=300 min

DPS Toolbox: upcoming features

A major update of the DPS Blockset for Matlab and Simulink is coming with features including:

- Predictive DPS control systems
- Robust control systems
- Adaptive DPS control systems
- New applications and examples

and many more...

s т u • •

- SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)

• • • COMSOL 2010, Bangalore, India (29-30. Oct.)

Get some inspiration!

Hulkó et. al:

Modeling, Control and Design of Distributed Parameter Systems with demonstrations in MATLAB

Limited free copies available here. Internet version available on: http://www.dpscontrol.sk/

- S j F
 - • COMSOL 2010, Bangalore, India (29-30. Oct.)

Get some inspiration!

DPS Control at: www.dpscontrol.sk

37

COMSOL 2010, Bangalore, India (29-30. Oct.)

т и •

Thank you for your attention.

http://www.dpscontrol.sk/

Ideas, proposals and collaborative projects are always welcome.

Corresponding author: gergely.takacs@stuba.sk

S T U • • SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

- Faculty of Mechanical Engineering
- • • COMSOL 2010, Bangalore, India (29-30. Oct.)