

DESIGN AND SIMULATION OF A MEMS-BASED CMUT FOR VISCOSITY SENSING APPLICATIONSAND

DIVYA MOHAN YADAV RAHUL GOYAL

OUTLINE

- 1. Viscosity and why sensing it is important
- 2. Need for MEMS viscometer
- 3. Novel idea of the viscosity sensor
- 4. Working of the sensor
- 5. Simulation of sensor using COMSOL
- 6. Results

VISCOSITY

WHY VISCOSITY MEASUREMENT IS IMPORTANT? CEN

- Predict material behavior.
- Helps design transportation and processing parameters.
- Set standards for Quality Control.
- Correlate liquid composition.

WHY MEMS VISCOMETER?

Conventional Viscometers are:

- Slow
- Bulky
- Costly
- Require Human Intervention
- Not suitable for Inline measurements
- Though have become more sophisticated with time.

Current Study

CMUT VISCOMETER

• Transmitter CMUT

CMUT VISCOMETER

- Transmitter CMUT
- Receiver CMUT

CMUT VISCOMETER

- Transmitter CMUT
- Receiver CMUT
- Fluid Under Inspection

• Actuation of CMUT

- Actuation of CMUT
- Transfer of Pressure wave in liquid column

- Actuation of CMUT
- Transfer of Pressure wave in liquid column
- Vibration of Receiver CMUT

- Actuation of CMUT
- Transfer of Pressure wave in liquid column
- Vibration of Receiver CMUT
- Sensing of Signal using Electronics

1.CMUT Parameters

2. Actuation of Transmitter CMUT

- 3. Pressure Induced in the Liquid Column
- 4. Vibration of the Receiver CMUT

1.CMUT Parameters

2. Actuation of Transmitter CMUT

- 3. Pressure Induced in the Liquid Column
- 4. Vibration of the Receiver CMUT
- 5.Sensing of Signal

1.CMUT Parameters

2. Actuation of Transmitter CMUT

- 3. Pressure Induced in the Liquid Column
- 4. Vibration of the Receiver CMUT

1.CMUT Parameters

2. Actuation of Transmitter CMUT

3. Pressure Induced in the Liquid Column

4. Vibration of the Receiver CMUT

1.CMUT Parameters

2. Actuation of Transmitter CMUT

3. Pressure Induced in the Liquid Column

4. Vibration of the Receiver CMUT

1.CMUT Parameters

2. Actuation of Transmitter CMUT

- 3. Pressure Induced in the Liquid Column
- 4. Vibration of the Receiver CMUT

CMUT PARAMETERS - MATERIALS USED

***PHYSICS USED: SOLID MECHANICS**

***PHYSICS USED: SOLID MECHANICS**

CMUT PARAMETERS - COMPUTED

Parameters	Transmitter	Receiver
Resonance Frequency	40 MHz – 50 MHz	40 MHz – 50 MHz
Membrane Thickness	100 nm	400 nm
Membrane Diameter	5.85 μm – 6.35 μm	11.65 μm - 13 μm
Vacuum Cavity	0.1 µm	0.5 μm
Pull-in voltage	67 v	> 67
DC voltage	30V	10V
AC voltage	$5V V_{pp}$	-

ACTUATION of Tx-CMUT

 $V_{DC} = 30 V$

```
V_{AC} = 5 V_{PP}
```

FREQUENCY OF AC SIGNAL: 21.16 MHZ

HIZERIA CERTA

ACTUATION OF Tx-CMUT

***PHYSICS USED: ELECTROMECHANICS**

HICHLE IGGITE CICENT

ACTUATION OF Tx-CMUT

***PHYSICS USED: ELECTROMECHANICS**

PRESSURE GENERATED BY CMUT

Peak Pressure = 10 MPa

*PHYSICS USED: : ACOUSTIC STRUCTURE INTERACTION

VIBRATION OF RECIEVER MEMBRANE WHEN IMPULSE BOUNDARY LOAD IS APPLIED

CENSE

*PHYSICS USED: SOLIDMECHANICS

VIBRATION OF RECIEVER MEMBRANE WHEN IMPULSE BOUNDARY LOAD IS APPLIED

***PHYSICS USED: SOLIDMECHANICS**

OUTPUT SIGNAL SENSING

OUTPUT SIGNAL SENSING

SENSING FROM Rx-CMUT

*PHYSICS USED: ELECTROMECHANICS

FREQUENCY RESPONSE OF THE RECEIVER CMUT ce IN DIFFERENT FLUIDS

FITTING RESULTS

- Quality factor varies exponentially with the viscosity of fluids which provides efficient sensitivity below the viscosity of 50 cp.
- The method of viscosity sensing can further be improved by improving post processing of the electronic signal.

Quality Factor = $\frac{\text{Bandwidth}}{\text{Resonant Frequency}}$

THANK YOU