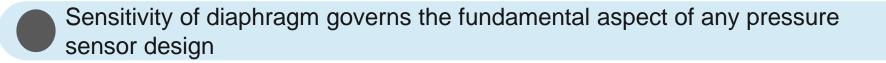


COMSOL CONFERENCE 2018 BOSTON


S.Shubham

MEMS Design Engineer

10.04.2018

Analysis of Mechanical Sensitivity of MEMS Pressure Diaphragm for contact formation

Overview

Novel design is presented to enhance mechanical sensitivity under atmospheric load

Contact formation between diaphragm and a suspended rigid structure is established

Role played by contact area in determining sensitivity

Introduction

Sensitivity is defined as increase in deflection of diaphragm as a result of increase in pressure acting on diaphragm

$$S_m = \frac{dw}{dP}$$

Single diaphragm becomes stiff upon deflection, to avoid stiffening a unique design has been introduced to be used for MEMS transducer

$$\frac{Pa^4}{Eh^4} = \frac{1}{A}\frac{y}{h} + B\frac{y^3}{h^3}$$

where, P applied pressure E Young`s modulus h thickness of diaphragm y deflection at center a diaphragm radius A stiffness coeff. for linear term B stiffness coeff. for non linear term

Resistance of diaphragm to load increases with cube of deflection

Previous designs using Corrugations achieved high sensitivities with Polycrystalline Silicon and Silicon Nitride as base diaphragm materials but extra fabrication processes increased the production cost

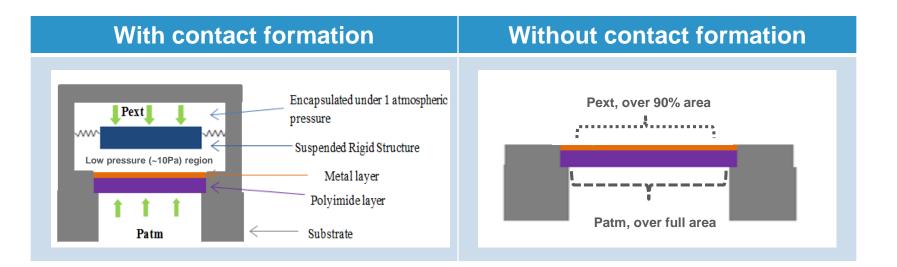
Design & Specifications

Table 1. Design Parameters

	Encapsulated under 1 atmospheric	Parameters	Value
Pext	pressure	Diaphragm material	Polyimide and Metal
·····	Suspended Rigid Structure Metal layer	Diaphragm Radius	250 µm
		Diaphragm (Polyimide) thickness	2 µm
Low pressure (~10Pa) region		Diaphragm (Metal) thickness	200 nm
		Rigid Structure or Boss Radius	225 µm
		Rigid Structure or Boss	10 µm
	Polyimide layer	Thickness	
		Thin suspension Radius	>250 µm
Patm 🤶	Substrate	Suspension thickness	1 µm
I atm		Patm, Pext	100 kPa

Diaphragm consists of Polyimide and metal layer

Polymer materials are elastic and can withstand greater mechanical strain than silicon and are not so brittle


Suspended rigid structure is encapsulated under 1 atm pressure or approx. 100kPa

Metal layer is added to hold the very low pressure (~10Pa) between the two structures

Knowles

Diaphragm Sensitivity

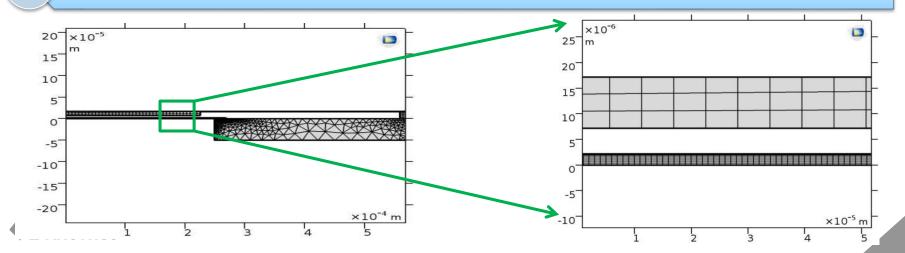
With & Without contact formation

Patm, atmospheric load (acting over 100% area) and Pext, external load (acting over 90% area)

Assuming, external load in other situation is directly acting on diaphragm and there is no contact formation with suspended rigid structure

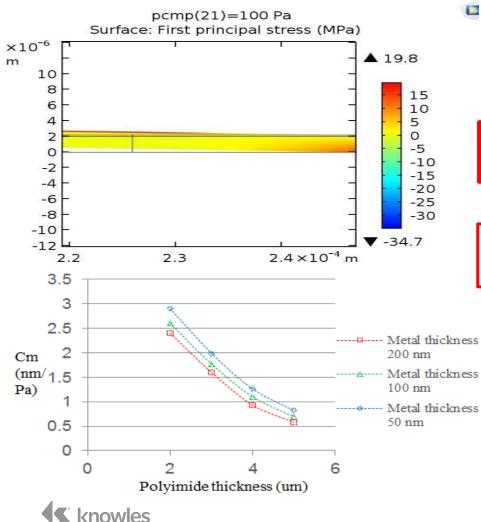
What difference in Sensitivity does that make ?

Use of COMSOL Multiphysics® software


2D axisymmetric model implemented for both cases in Structural Mechanics module

Contact simulation uses *Augmented Lagrangian* algorithm which is more robust but computationally expensive, all surface are considered frictionless and adhesionless

Highly non-linear problem is solved using Newton-Raphson iterative technique, this method converges if initial estimate for the solution is close


Strategy used here is to ramp up load gradually, also called Load ramping

Destination (diaphragm) surface is meshed twice compared to Source (Rigid structure)

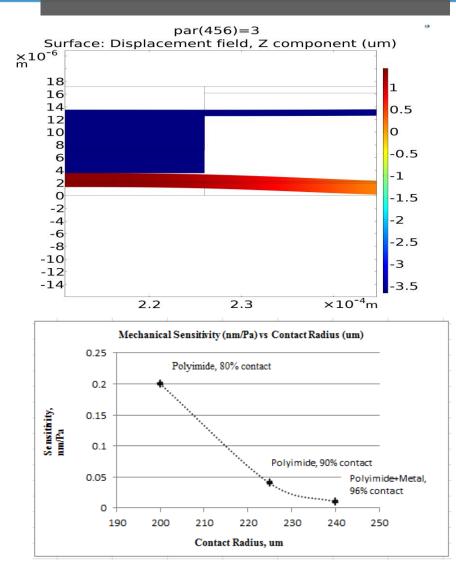
Experimental Results

Without Contact Formation

Table 2. Values and Results

Rad	Mat	td	Initial	Sm	Max.
			Stress		Stress
250	PS	2.2	100	0.06	125
[um]		[um]	[MPa]	[nm/Pa]	[MPa]
250	PS	2.2	1	0.38	33
[um]		[um]	[MPa]	[nm/Pa]	[MPa]
250	PI	2.2	1	3.2	27.4
[um]		[um]	[MPa]	[nm/Pa]	[MPa]
250	PI	2 [um]+	1	2.4	19.8
[um]	+M	0.2[um]	[MPa]	[nm/Pa]	[MPa]

Rad: Diaphragm Radius, Mat: Material, td: Diaphragm thickness, PS: Polycrystalline Silicon, PI: Polyimide, M: Metal, Sm: Mechanical Sensitivity


Thinner diaphragm offers higher sensitivity as,

$$S_m = \frac{A}{8\pi\sigma h_d}$$

where **A** is area, h_d is thickness & σ is intrinsic stress

Experimental Results

With Contact Formation

Table 3. Sensitivity variation with Contact Radius

Dia.	Rigid	Initial	td	Conta	Sm
Mat.	structure	Stress		ct	
	Mat.			Rad.	
PI	PS	1	2.2	200	0.2
		[MPa]	[um]	[um]	[nm/Pa]
				(80%)	
PI	PS	1	2.2	225	0.04
		[MPa]	[um]	[um]	[nm/Pa]
				(90%)	
PI+	PS	1	2.2	240	0.01
Μ		[MPa]	[um]	[um]	[nm/Pa]
				(96%)	

Dia.Mat.: Diaphragm Material, td: diaphragm thickness, Rad.: Radius, Sm: Mechanical Sensitivity, PI: Polyimide, PS: Polycrystalline Silicon, M: Metal

 Expect sensitivity to be parallel combination of individual sensitivities of diaphragm and suspended rigid structure (known sensitivity of >6nm/Pa)

Sensitivity is extremely low compared to previous situation ! Why ???

Conclusion

Significant difference in sensitivities can be pointed to behavior of contact parts moving as a thick structure after contact establishment

Sensitivity drops as contact area is increased

COMSOL Multiphysics® simulation software helped in pointing out the differences between the two designs and how to approach further keeping sensitivity loss behavior in mind

Thank You