

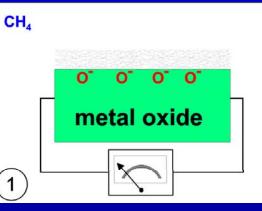
Presented at the COMSOL Conference 2009 Milan

A. Paoli¹, D. Caviglia¹, M. Valle¹, L. Seminara², A. Garibbo²

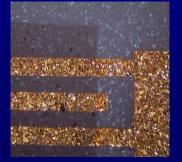
1: Department of Biophysical and Electronic Engineering University of Genova – Genova, ITALY 2: SELEX Communications S.p.A. Genova, Italy

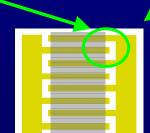
THERMAL SIMULATION AND PACKAGE INVESTIGATION OF WIRELESS GAS SENSORS MICROSYSTEMS

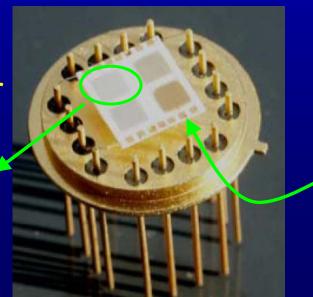
Outline


- How gas sensors work
- Standard package
- Comsol simulations
- Proposed package
- Results summary
- Conclusions

How Gas Sensors work

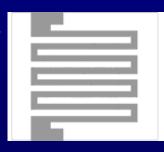

target gases MUST touch the surface


Chemical reaction needs more than 150°C



Top layer:

- electrodes + oxide
- Pt wire thermometer

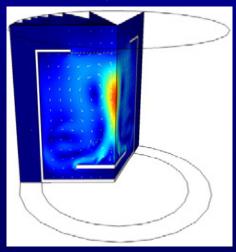


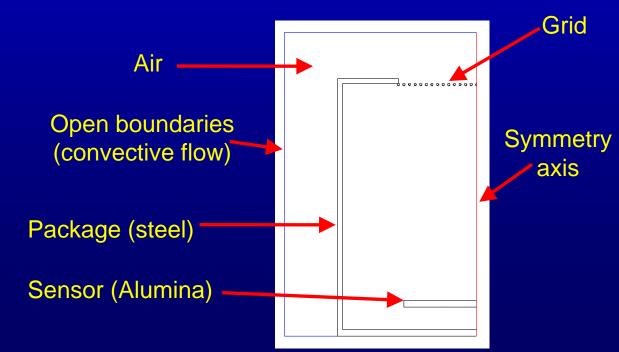
Bottom layer:

Pt heater

Standard Package

- Standard TO8 package with hole and grid on top
- Sensor is suspended using bonding wires to provide thermal insulation

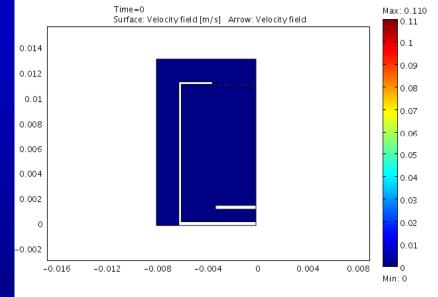

Hot sensor inside


Comsol simulation (1)

Predefined coupling with

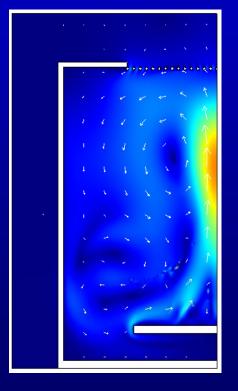
- Incompressible Navier Stokes (ns)
- Convection and Conduction (cc)

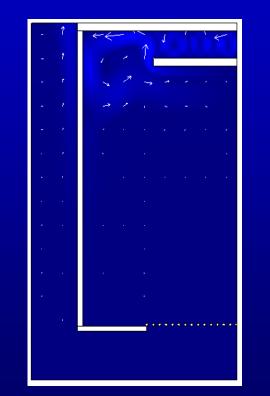
2D model with axial symmetry



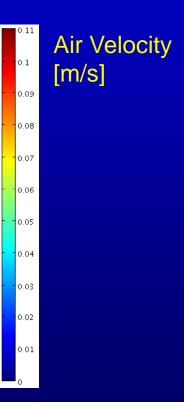
Comsol simulation (2)

Time domain simulations

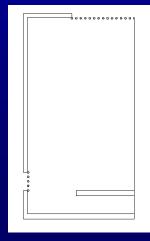

 Heater, thermometer and external temperature regulator simulated using mathematical expressions


- Mesh too fine: it was impossible to simulate
- Mesh too coarse: simulation was inaccurate

Results with standard package


• Poor air exchange

Sensor "face up"


Sensor "face down"

Proposed package

 Similar to the standard package but with windows on the vertical wall, near to the sensor

2D model using axial symmetry as the previous one

Proposed package results

Improved air exchange

		$(q_1, q_2, s_1, s_1, s_1, s_1, s_1, s_1, s_1, s_1$	L.
			1
	14 V	22-1	
	1.1	1 1 1	
		1 . × 1	\uparrow
	1 X	5 4 4 1	î
			Ŷ
	1.11		1
	1 ×		1
4			7
		- ~ ~ ~	
	· • •		*
		and the second second	

Sensor "face up"

Ж	1	, (~~<		←	~	5
4	1	. 1	- 1	1			
	2						
	3						
	÷.						
	1						
	÷						
	•						
	•						
	•						• • • •

Air Velocity

[m/s]

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Sensor "face down"

Results summary

	Standard package face up	Standard package face down	Modified package face up	Modified package face down
Average inlet velocity [m/s]	4-10 ⁻²	4-10 ⁻⁵	5-10 ⁻²	5-10 ⁻³
Average outlet velocity [m/s]	4-10 ⁻²	4-10 ⁻⁵	6-10 ⁻²	2.10 ⁻²
Average exchange flow [m ³ /s]	6-10 ⁻⁷	6-1 0 ⁻¹⁰	1-10 ⁻⁶	2.10 ⁻⁷

Conclusion

- Comsol has been used to simulate convective flows in sensor packages
- Simulation results have been used to design a new package to improve the sensor efficiency
- Further improvement can be done finding the best position of the new package aperture