

3D Electro-Thermal Study for Reliability of Automotive Power Vertical MOSFET Using COMSOL Multiphysics

T. Azoui*1, S. Verde^{1,2}, J. B. Sauveplane¹ and P. Tounsi¹
¹LAAS/CNRS, 7 avenue du Colonel Roche - 31077 Toulouse, France.
²Departement of Electronics and Telecommunications Engineering, University of Naples "Federico II"; Naples, Italy

3rd European COMSOL Conference October 14-16, 2009 in Milan

Contents

- Introduction
- Device description
- F.E. Model of power device
- Electro-thermal simulation of power device damages
- Electro-thermal simulation of metallization thickness
- Conclusions

Introduction

What?

Hypothesis: MOSFET is ON state

Introduction

Why?

- Electro-thermal simulations are required to improve the design of components and ensure longer lifespan.
- Temperature could creates defects in the structure which affect the electrical functions.
- The sequence of the events after emergence of defects occur the breakdown of the power device.
- •These events are related to electro-thermal coupling phenomena.
- simulate the "fully ON" behavior of the transistor which is the dominating heat loses during a short circuit mode.

Device description

- Power vertical MOSFET
- Used in the a automotive industry
- sustain current up to 150 A on a 2 m Ω on-state resistance device

Device description

- •Power device model is achieved with COMSOL Multiphysics software.
- •3D electro-thermal element type that has two dependent variables, voltage and temperature.

Mesh

- Large scale difference issue
- using the free mesh parameters box
- Number of elements: 36560

Boundary conditions

Electrical boundary conditions

$$J_{DS} = 634 \text{ A/cm}^2$$

V=0 V

Thermal boundary conditions

h= 2000 W m⁻² K⁻¹
$$(T_D, T_S)$$
= 20°C

Results

Time=0.05 Slice: Electric potential [V]
Subdomain: Temperature [°C]

Temperature distribution after 50 ms T_{Max} = 169°C

Electro-thermal simulation of power device damages

- •Damage: Bonding wire lift off
- Same boundary conditions
- •Increase in temperature by 69°C

Electro-thermal simulation of power device damages

Impact of the number of bonding wire

Number of failed wires	Maximum temperature (°C)
0	170
1	178
2	190
3	402
4	239

The maximum temperature increases with the number of failed wires.

Electro-thermal simulation of metallization thickness

Solution: Increasing top metallization thickness

Metallization thickness of 30 $\mu m \rightarrow$ decrease of 52°C compared to the device with 4 μm

Electro-thermal simulation of metallization thickness

Conclusion

- •The F.E. model studied is used to investigate 3D electro-thermal coupling effects during a short circuit mode.
- •The effects of bonding wire lift off and number of wires on the device transient electro-thermal behavior are investigated.
- •Increasing metallization thickness is a solution given to limit temperature increases due to bonding wire lift off.
- •Electro-thermal simulation are useful for optimization of structure design to guarantee a longer lifespan.

Thank you for your attention