COMSOL used for simulating biological remodelling

Salvatore Di Stefano

Politecnico of Torino – Department of Mathematical Sciences (DISMA)

COMSOL Conference Rotterdam 2017

Rotterdam - October 18-20, 2017

COMSOL CONFERENCE 2017 ROTTERDAM

Joint work with

Politecnico di Torino

University of Calgary

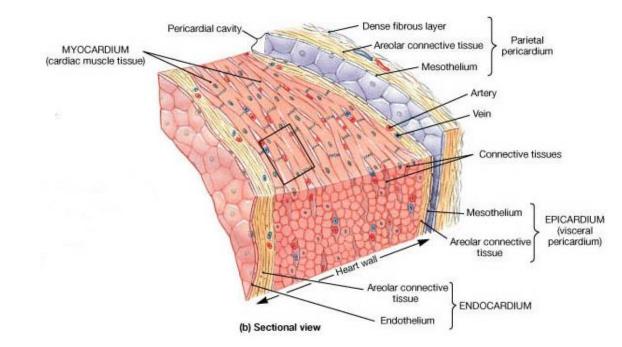
- Alfio Grillo
- Markus Michael Knodel

- Salvatore Federico
- Kotaybah Hashlamoun

This work has been financed by *Politecnico di Torino* [AG, SDS, MMK, KH], the *Fondazione Cassa di Risparmio di Torino* [AG, SDS, MMK, KH], in the context of the funding campaign 'La ricerca dei talenti' (HR Excellence in research) [AG, SDS, MMK, KH] and the Natural Sciences and Engineering Research Council of Canada, through the NSERC Discovery Program [SF, KH].

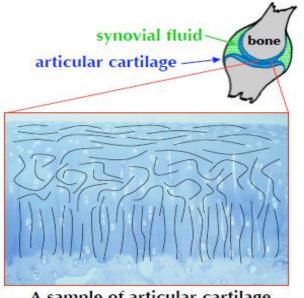
Biological tissues: an overview

- Highly complex physical systems
- Hydrated, fibre-reinforced, heterogeneous and anisotropic porous media.
- Description of mechanical interactions
- Anelastic distortions



Articular cartilage

In articular cartilage, the fibres are distributed in a non-uniform way and this influences, for example, the stiffness of the tissue and the flow of the interstitial fluid.

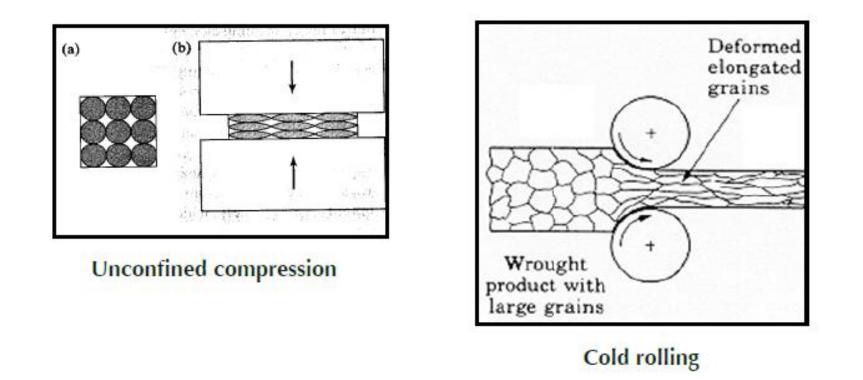


A sample of articular cartilage.

- <u>Deep zone</u> (oriented perpendicularly to the interface)
- Middle zone (random distributed)
- <u>Upper zone</u> (the fibres are parallel to the interface)
- *Transversely isotropic* behaviour

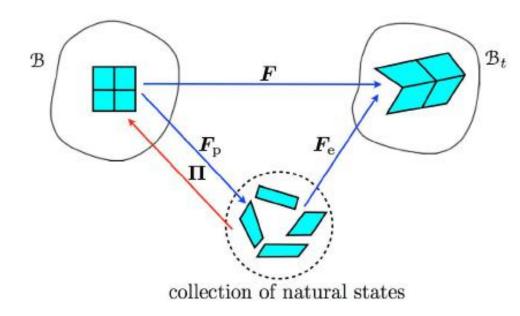
[Joint work with Salvatore Federico, Gaetano Giaquita, Walter Herzog, Guido La Rosa, (2004,2005)], [Mansour, J.M. (2003), Biomechanics of cartilage, Chapter 5, page 68]

Remodelling: change of internal structure



The change of the body's shape (visible phenomenon) is accompanied by a reorganization of its internal structure (hidden phenomenon), which causes macroscopic variations of the mechanical properties of the material.

The implant tensor



- Reference configuration *B*
- Actual configuration \mathcal{B}_t
- Deformation gradient **F**
- BKL decomposition: $F = F_e F_p$
- Epstein-Maugin decomposition: $F = F_e \Pi^{-1}$
- Π is said to be the <u>implant tensor</u>

Fibre pattern

• Unit sphere: set of all unit vectors emanating from $X \in \mathcal{B}$

 $\mathbb{S}_X^2 \mathcal{B} = \{\mathfrak{m}_X \in T_X \mathcal{B} : \|\mathfrak{m}_X\| = 1\}$

- Probability density that a fibre is aligned along \mathfrak{m}_X $\wp_X : \mathbb{S}^2_X \mathcal{B} \to \mathbb{R}^+_0, \ \mathfrak{m}_X \to \wp_X(\mathfrak{m}_X)$
- Directional average of a physical quantity associated with the fibres $\mathfrak{F}_X : \mathbb{S}^2_X \mathcal{B} \to \mathbb{R}$

 $\langle\!\langle \mathfrak{F}_X \rangle\!\rangle = \int_{\mathbb{S}^2_X \mathcal{B}} \mathfrak{F}_X(\mathfrak{m}_X) \wp_X(\mathfrak{m}_X) = \int_0^{2\pi} \int_0^{\pi} \mathfrak{F}_X(\hat{\mathfrak{m}}_X(\Theta, \Phi)) \wp_X(\hat{\mathfrak{m}}_X(\Theta, \Phi)) \sin(\Theta) d\Theta d\Phi$ where

 $\mathfrak{m}_X = \hat{\mathfrak{m}}_X(\Theta, \Phi) = \sin \Theta \cos \Phi \,\mathfrak{e}_1 + \sin \Theta \sin \Phi \,\mathfrak{e}_2 + \cos \Theta \,\mathfrak{e}_3$

with $(\Theta, \Phi) \in [0, \pi[\times[0, 2\pi]])$, and $\{\mathfrak{e}_{\alpha}\}_{\alpha=1}^{3}$ orthonormal basis in $T_X \mathcal{B}$.

• Transverse isotropy

 $\exists \mathfrak{m}_0$ such that, for \boldsymbol{H}_0 : $\boldsymbol{H}_0\mathfrak{m}_0 = \pm\mathfrak{m}_0$, $\wp_X(\boldsymbol{H}_0\mathfrak{m}_X) = \wp_X(\pm\mathfrak{m}_X) \ \forall X \in \mathcal{B}$

• Parity Symmetry

 $\wp_X(\mathfrak{m}_X) = \wp_X(-\mathfrak{m}_X)$, for all $X \in \mathcal{B}$

Constitutive framework: strain energy function

- Hyperelastic behaviour from the collection of natural states
- Strain energy function

$$W_{\rm R}(C, X, t) = \frac{1}{J_{\Pi}(X, t)} \hat{W}_{\kappa}(C_{\rm e}(X, t))$$

= $\frac{1}{J_{\Pi}(X, t)} (\Phi_{\rm s\nu} \hat{U}(J_{\rm e}) + \Phi_{0\rm s\nu} \hat{W}_{0}(C_{\rm e}) + \Phi_{1\rm s\nu} \hat{W}_{\rm e}(C_{\rm e}))$

with

- $J_{\Pi}(X,t) = \det(\mathbf{\Pi}(X,t)), J_{\mathbf{e}}(X,t) = \det(\mathbf{F}_{\mathbf{e}}(X,t));$
- $\Phi_{s\nu}(X,t) = J_e(X,t)\phi_s(X), \Phi_{0s\nu}(X,t) = J_e(X,t)\phi_{0s\nu}(X), \Phi_{1s\nu}(X,t) = J_e(X,t)\phi_{1s\nu}(X)$ are, respectively, the volumetric fractions of the solid phase, the matrix and the fibres, such that $\phi_{0s} + \phi_{1s} = \phi_s$;
- $C_e = F_e^T \cdot F_e = \Pi^T C \Pi$ is the elastic part of the right Cauchy-Green deformation tensor *C*.

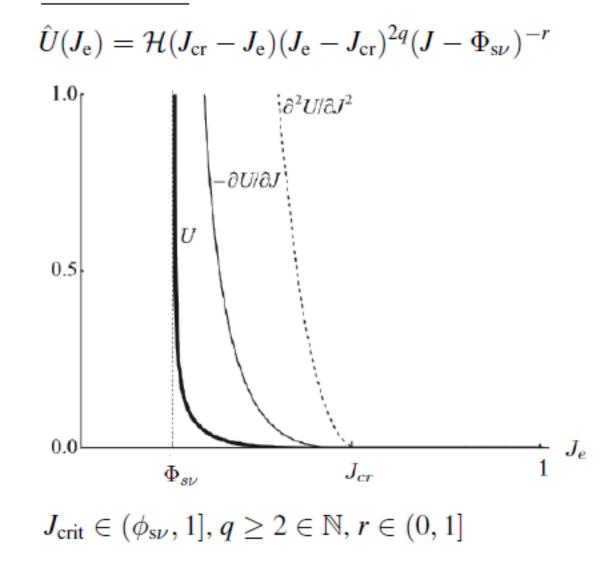
Strain energy of the matrix

$$\begin{split} \hat{W}_0(C_e) &= \alpha_0 \frac{\exp\left(\alpha_1 [I_1 - 3] + \alpha_2 [I_2 - 3]\right)}{[I_3]^{\alpha_3}} \\ I_1 &= \operatorname{tr}(C_e) \\ I_2 &= \frac{1}{2} [(\operatorname{tr}(C_e)^2 - \operatorname{tr}(C_e^2)] \\ I_3 &= \operatorname{det}(C_e) \\ \alpha_1 + 2\alpha_2 &= \alpha_3 = 1 \end{split}$$

Ensemble potential

$$\begin{split} \hat{W}_{e}(C_{e}) &= \hat{W}_{1i}(C_{e}) + \langle\!\langle \hat{W}_{1a}(C_{e}, \mathfrak{m}) \rangle\!\rangle \\ \hat{W}_{1i} &= \hat{W}_{0}(C_{e}) \\ \hat{W}_{1a}(C_{e}, \mathfrak{m}) &= \mathcal{H}(I_{4e} - 1)\frac{1}{2}c \, [I_{4e} - 1]^{2} \\ I_{4e} &= C_{e} : \mathfrak{a}, \ \mathfrak{a} &= \mathfrak{m} \otimes \mathfrak{m} \end{split}$$

Penalty term



Constitutive framework: Darcy's law

Linear relation between the filtration velocity and the gradient of pressure

- spatial formulation: $q = \phi_f(v_f v_s) = k \operatorname{grad} p$
- material formulation: $Q = JF^{-1}q = K \operatorname{Grad} p$

where

- $v_{\rm f}$ is the velocity of the fluid phase and $v_{\rm s}$ is the velocity of the solid phase;
- $\phi_{\rm f} = 1 \phi_{\rm s}$ is the volumetric fraction of the fluid phase;
- *k* is the spatial permeability tensor and *K* is the material permeability tensor. In particular

$$\mathbf{K} = \hat{\mathbf{K}}(\mathbf{F}, \mathbf{\Pi}, \zeta) = J \,\hat{k}_0(J, J_{\Pi}, \zeta) \,\mathbf{C}^{-1} + J^{-1} \,\hat{k}_0(J, J_{\Pi}, \zeta) \,\mathbf{\Pi} \,\left\langle\!\!\left\langle \frac{\mathfrak{a}}{I_{4\mathrm{e}}} \right\rangle\!\!\right\rangle \,\mathbf{\Pi}^T$$

where ζ is an axial coordinate and $k_0 = \hat{k}_0(J, J_{\Pi}, \zeta)$ is a Holmes-Mow type scalar permeability.

Problem setting (1/2)

The uknowns of the problem are the motion χ , the pore pressure p and the implant tensor Π . The system of equations to solve is

$$\dot{J} - \text{Div}[\mathbf{K} \text{ Grad } p] = 0,$$

$$\text{Div}(-J p \mathbf{g}^{-1} \mathbf{F}^{-T} + \mathbf{P}_{\text{sc}}) = \mathbf{0},$$

$$\text{sym}(\mathbf{\Lambda} \mathbf{C}^{-1}) = \xi_p \left[\mathbf{S} - \frac{1}{3} \operatorname{tr}(\mathbf{C} \mathbf{S}) \mathbf{C}^{-1} \right].$$

In addition, we suppose $J_{\Pi} = 1$ and $\xi_p = \lambda_0 \phi_s^2 \frac{\left[||\operatorname{dev}(\sigma)|| - \sqrt{(2/3)}\sigma_y \right]_+}{||\operatorname{dev}(\sigma)||}$, with σ being the Cauchy stress tensor, σ_Y is a yield stress and $[\cdot]_+$ extacts the positive part of the function to which it is applied

Problem setting (2/2)

- The first equation is the balance of mass.
- The second equation is the moment balance equation, where $P_{sc} = \hat{P}_{sc}(F, \Pi)$ is the constitutive part of the first Piola-Kirchoff stress tensor.
- The third equation is the law of evolution for the implant tensor Π , where $\Lambda = \dot{\Pi} \Pi^{-1}$ is the tensor of *inomogeneities velocity*.
- A pseudo-Gaussian probability distribution has been chosen

$$\wp(\Theta) = \hat{\wp}(\Theta, X, t) = \frac{\hat{\gamma}(\Theta, X, t)}{\int_0^{2\pi} \hat{\gamma}(\Theta', X, t) \sin(\Theta') d\Theta'}$$
$$\gamma(\Theta) = \hat{\gamma}(\Theta, X, t) = \exp\left(-\frac{[\Theta - Q(X)]^2}{2\omega(X)}\right),$$

where Q is the mean angle and ω is the variance.

Closing the system

Let us introduce the polar decomposition of the implant tensor

 $\Pi = H.R = HGR$

where

H is a symmetric positive definite tensor; *R* is a rotation tensor; By imposing $R^{\beta}_{\ \alpha} = \delta^{\beta}_{\ \alpha}$, we obtain $\Pi = HG$

and

$$\Lambda = \dot{\Pi} \Pi^{-1} = \dot{H} H^{-1}.$$

We can solve the flow rule for a symmetric tensor.

Simulations (1/2)

We simulated an unconfined compression test for a cylindrical specimen. In this case we imposed the following boundary conditions

> $\chi(X, t) = \chi(X, 0) = X,$ (K Grad p).N = 0

on the lower boundary Γ_l ,

$$(-J p \mathbf{g}^{-1} \mathbf{F}^{-T} + \mathbf{P}_{sc}) \cdot \mathbf{N} = \mathbf{0},$$

$$p = 0$$

on the lateral boundary Γ_L and

$$\chi^{z}(X, t) = g(t),$$

K (Grad p).**N** = 0

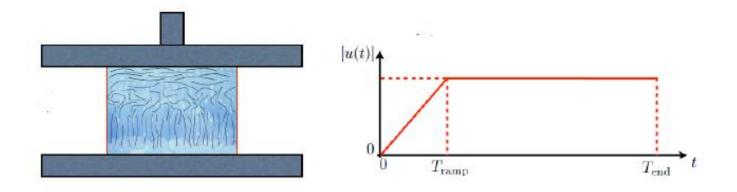
on the upper boundary Γ_u .

Simulations (2/2)

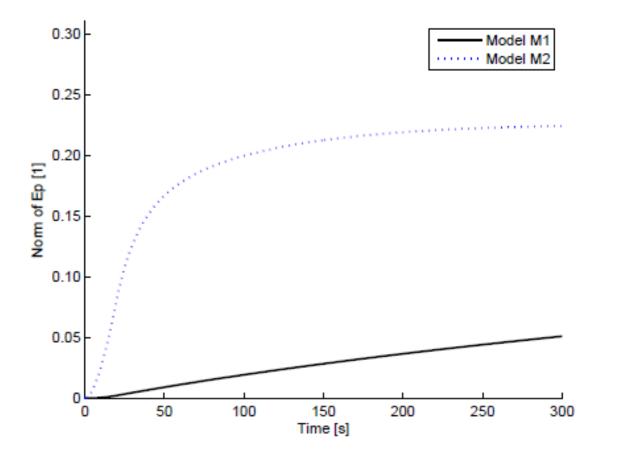
In the previous equations, g is an imposed displacement given by

$$g = \begin{cases} L - \frac{t}{T_{\text{ramp}}} u_{\text{T}}, & t \in [0, T_{\text{ramp}}] \\ L - u_{\text{T}}, & t \in [T_{\text{ramp}}, T_{\text{end}}] \end{cases}$$

where T_{ramp} is the final instant of time of the loading ramp and u_T is a reference displacement.



Results: plastic strain behaviour



 $E_{\rm p} = \frac{1}{2} [\Pi^{-1} \cdot \Pi - G]$ is the Almansi-Euler like strain tensor associated to the anelastic distortions

Conclusions and future works

- Study of the mechanical properties of biological tissues
- Anelastic distortion
- Possibility to implement other flow rules: take into account correlation of the fibres
- Coupling anelatic distortions and evolution of the fibre pattern
- Introduction of the Forchemeier correction for the fluid flow

Thank you for your attention!