

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications

Luke Gritter, Jeff Crompton

and Kyle Koppenhoefer

AltaSim Technologies

Certified Consultant

Plasma

- Fourth state of matter
 - Conductive assembly of electrons, ions and neutral species
 - Overall quasi neutral

- Most common matter in the Universe
- Not naturally occurring on Earth

Certified Consultant

Plasma analysis

Simulation of plasmas

COMSOL

Fluid approach to simulate plasmas

• Electron density transport:

$$\frac{\partial n_e}{\partial t} + \nabla \cdot \mathbf{\Gamma}_e = R_e - (\mathbf{u} \cdot \nabla) n_\varepsilon$$

4+ PDEs

• Electron energy density transport:

$$\frac{\partial n_{\varepsilon}}{\partial t} + \nabla \cdot \mathbf{\Gamma}_{\varepsilon} + \mathbf{E} \cdot \mathbf{\Gamma}_{e} = S_{en} - (\mathbf{u} \cdot \nabla) n_{\varepsilon} + \frac{Q + Q_{gen}}{q}$$

- Heavy species transport (one for each species): $\rho \frac{\partial w_i}{\partial t} + \rho (\mathbf{u} \cdot \nabla) w_i = \nabla \cdot \mathbf{j}_i + R_i$
- Poisson's equation for electrostatics:

$$\nabla \cdot (\varepsilon_0 \varepsilon_r \mathbf{E}) = \rho_q$$

Fluid approach advantages/limitations

- Suitable for FEM
- Less computationally intensive
- Good approximation of many industrial plasmas

PECVD

Plasma: Surface Cleaning

- Application: Medical, Food
- Environmentally benign compared to conventional:
 - Thermal
 - Chemical
- Low heat plasma operates in seconds/minutes
- Reaction between plasma free radicals and surface
- Bacteria, fungi, spores

DC micro plasma jet

Kolb, J. F., et al. Applied Physics Letters **92**, 1-3 (2008)

COMSOL Certified Consultant

DC micro plasma jet

- 1 atm pressure
- Dry air (~ 80 % N₂ and 20 % O₂)

Flow rate of air: 80 ml/min (at 20 °C)

- 100 kΩ ballast resistor
- 1000 V applied voltage
- Electrode voltage of 550 V
- Discharge current of 4.5 mA

Plasma analysis

- Preprocessing
 - Two term Boltzmann equation
 - Distribution function in 6dimensional phase space
 - Electron transport as function of electron energy
 - Electron density
 - Electron energy
 - Reaction rates
 - Transport coefficients

- Multiphysics analysis
 - Fluid/Reaction
 - Heat Transfer
 - Turbulent fluid flow

Multi-step solution methodology

Certified Consultant

Results: Temperature

- Peak temperature ~ 1900°C
- Maximum in cathode sheath
- Centerline temperature ~92°C 10mm from exit

Results: Species

Summary

- Plasma simulation of plasma jet
- Predicts distribution of:
 - Temperature
 - Species concentration
- Development and design of operating procedures

