Application of Solution Mapping to Reduce Computational Time in Actively Cooled Power Electronics

Kirk T. Lowe and Rao V. Arimilli

Mechanical, Aerospace, and Biomedical Engineering University of Tennessee - Knoxville October 9, 2008

Acknowledgements

Project Sponsored by: Oak Ridge National Laboratory
Work in support of Direct-Cooled Power Electronics Substrate Project funded by DOE FreedomCar Program

Problem Description

- Typical packaging has many layers
- Thermal resistance is large
- Commercial applications can require a coolant temperature over 100° C
- Thermal resistance must be reduced

Proposed Solution

Top View

Provision Patent 61/037,129

Proposed Solution (ii)

- Embeds heat sink into ceramic
- Eliminates TIM, copper base plate, one solder layer, and aluminum heat sink
- Thermal performance of coolant channel design is modeled to compare to design limitations.

Model Setup

- Fluid Dynamics $\rho \vec{u} \cdot \nabla \vec{u} = \nabla \cdot \left[-pI + \eta \left(\nabla \vec{u} + \left(\nabla \vec{u} \right)^T \right) \right]$
 - → Incompressible Navier-Stokes
 - → Continuity
- Heat Transfer
 - → Conduction and Convection
- Constant Properties
- Steady State to predict worst-case-scenario
- Maximum Temperatures
 - \rightarrow Fluid 130° C
 - → Interface 150° C

$$\rho C_{p}\vec{u}\cdot\vec{\nabla}T = Q''' + k\nabla^{2}T$$

 $\nabla \cdot \vec{\mu} = 0$

Solution Strategy

- Solve 2-D axisymmetric flow field
- Map solution to 3-D cylinders (Extrusion Coupling Variables)
- Apply thermal boundary conditions
- Solve for temperature distribution

Boundary Conditions

- Inlet Velocity, Re_{D,in}
- Outlet, Pressure, no viscous stress, $p_0=0$
- Walls, no slip
- Chip Heat Load, 1.78e9 W/m³
- Inlet Temperature, 105° C
- All other boundaries thermally insulated

Solution Mapping

- Useful for simple flow field in more complex structure
- Solve 2-D axisymmetric flow field
- Map solution to 3-D cylinder using Extrusion Coupling Variables
- Translate axis as necessary
- Separate variables into directional components
- Incorporate into convection heat transfer
- Solve temperature distribution

Solution Mapping (i)

Solution Mapping (iii)

- 2-D axisymmetric solution
- Solved
 parametrically to desired input velocity or
 Reynolds number

Solution Mapping (iv)

<u> </u>	Subdomain	Extrusion Variables	
Source Destination	Source Vertices Desti	nation Vertices	
Subdomain selection	Name u_2d v_2d	Expression V	
Select by group	 Linear transformation General transformation 	Source transformation n X: r V. z OK Cancel App	Subdomain Extrusion Variables Source Destination Source Vertices Geometry: *Geom2 Variable: u_2d Level: *Subdomain
$\sqrt{(x-x)}$	y = z	$\overline{r_i}^2 = r_i$	Subdomain selection Use selected subdomains as destination Destination transformation X: Sqrt((x001)^2+(z0) Y. Y Select by group OK Cancel Apply Help

Solution Mapping (v)

- Initial model update uses initialized (coarse) mesh
- Mesh refinement is necessary to transfer velocity data to convection regime

Solution Mapping (vi)

• Fine mesh better resembles the accuracy of the 2-D solution

Solution Mapping (vii)

1 x2 -0.002+x m 2 z2 -0.0015+z m 3 theta atan(z2/x2) rad	-
2 22 -0.0015+z m theta atan(z2/x2) rad	
theta atan(z2/x2) rad	
u2 u_2d*cos(theta) []	
w2 u_2d*sin(theta) []	
Select by group	

Solution Mapping (viii)

Results

- High thermal conductivity ceramics produce lower maximum interface and fluid temperatures
- Chip temperatures are within design limits
- Working Fluid is above its boiling point

Maximum Interface and Fluid Temperatures of the Four Ceramic Materials at Re_{D,in}

Results (ii)

- Increasing inlet Re_D, decreases maximum temperatures
- Pressure drop is small
- Model pressure drop coincides well with analytic calculations

Variations of Maximum Interface and Fluid Temperatures and the Pressure for Ceramic 4

Results (iii)

- Large core of "cold" fluid at channel exit (41.3%)
- Diameter at mass manufacturing limit
- To improve cooling
 - → Surface enhancement
 - → Thermal conductivity enhancement

Fluid Temperature Along Diameter at Outlet of Hottest Channel in Ceramic 4

Solution Accuracy

Comparison of Maximum Fluid Temperature between COMSOL Solutions and Analytical Solution for a Constant Flux Tube

Solution Accuracy (ii)

- Analytic solution within 5% of simulation for all Reynolds numbers
- Model results are conservative
 - → Larger maximum temperatures
- Analytic solution provides good basis for initial sizing and feasibility

Conclusions

- New package substrate can enable the use of high temperature coolants
- High thermal conductivity ceramics are necessary to minimize thermal resistance for this coolant path design
- An increase in the nominal flow rate is required to meet the design limitations
- Solution mapping significantly decreases the amount of time required to solve 3-D convective flows
- Work continues to improve flow channel design and thermal conductivity of working fluid

Questions?