Plasma Edge Simulations by Finite Elements using COMSOL

Ch.Hollenstein and A. Howling EPFL/CRPP Lausanne

Introduction

Large area PECVD depositions (>1m²) Application Silicon deposition

Thin film solar cells Flat displays

Problems of large area plasma depositions

Homogeneity (... of layer thickness, structure)

Gas flow Electrical parameters Edge effects

Problems of large area plasma reactors

Plasma reactor parameters and geometry

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Basic equations and boundary conditions

2D Fluid equation

electron continuity:
$$\frac{\partial n_e}{\partial t} + \nabla \cdot \underline{\Gamma}_e = k_{ion} n_e N; \quad \underline{\Gamma}_e = -\mu_e n_e \underline{E} - D_e \nabla n_e$$

ion continuity: $\frac{\partial n_i}{\partial t} + \nabla \cdot \underline{\Gamma}_i = k_{ion} n_e N; \quad \underline{\Gamma}_i = \mu_i n_i \underline{E} - D_i \nabla n_i$

electron energy continuity; $(n_{e}\varepsilon)$ is the energy density in $eV \cdot m^{-3}$:

$$\frac{\partial(n_{e}\varepsilon)}{\partial t} + \nabla \cdot \underline{\Gamma}_{w} = -\underline{\Gamma}_{e} \cdot \underline{E} - K_{\text{loss}} n_{e} N; \quad \underline{\Gamma}_{w} = -\frac{5}{3} \mu_{e} (n_{e}\varepsilon) \underline{E} - \frac{5}{3} D_{e} \nabla (n_{e}\varepsilon);$$
$$-\underline{\Gamma}_{e} \cdot \underline{E} = \mu_{e} n_{e} \left(E_{x}^{2} + E_{y}^{2} \right) + D_{e} \left(\frac{\partial n_{e}}{\partial x} E_{x} + \frac{\partial n_{e}}{\partial y} E_{y} \right).$$

Poisson's equation:
$$\nabla^2 V = -\frac{e}{\varepsilon_0}(n_i - n_e); \quad \underline{E} = -\nabla V$$

Meshing: Quadrilateral mesh Boundary mesh option Optimizing (calculation time, memory...)

Solver: Spoole (time dependent)

A simple case

Meshing and convergence

école polytechnique Fédérale de lausanne

Investigated simplified geometries

Presence of a Double Layer?

Time dependent space charge density

Double Layer and Sheath

ÉCOLE POLYTECHNIQUE FÉ DÉRALE DE LAUSANNE

Fundamental role of corners

Different role of concave and convex corners

Centre de Recherches en Physique des Plasmas Plasma Processing

Time=1.75e-4 Surface: Concentration, ne [mol/m3]

Known problem from ion implantation Centre de Recherches en Physique des Plasmas Plasma Processing

Influence of the reactor edge

Corners are an important design element

Important parameter:

Sheath thickness

Geometrical dimensions of the corner

Other design parameters which influence the plasma

Rounding of the corners

Material (Insulator...)

Spacing (dimensions)

Conclusion

Simulations are a very useful method for plasma physics and plasma edge design

COMSOL software is well adapted

Simplified geometries

Meshing

Convergence

Insight in the physics of corners

Insight into the physics of RF reactors

Design of plasma edge

