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Abstract: Inertial navigation in 3D space requires 
acceleration measurement along all three degree-of-
freedoms. For improved efficiency, accelerometers 
which can sense acceleration along multiple axes are 
desired. In this paper, a dual-axis MEMS 
(Microelectromechanical Systems) accelerometer 
with T-shape beam structure is proposed. When there 
is acceleration input along X and Y directions, the T-
shape beams bend accordingly due to inertial force. 
The bending displacement along X and Y directions 
can be measured by differential capacitance sensing, 
hence the input accelerations can be derived. 
COMSOL Multiphysics is used to simulate the 
displacement sensitivity of the accelerometer along X 
and Y directions.  Solid Mechanics (solid) physics 
and Electromechanics (emi) physics are used in 
device modeling. Stress intensity simulation of the 
device under input acceleration of 50g is also 
performed. The designed dual-axis MEMS 
accelerometer can be further integrated with a Z-axis 
accelerometer for complete 3D inertial navigation. 
 
Keywords: COMSOL multiphysics, 
Microelectromechancial Systems (MEMS), Dual-axis 
accelerometer, Differential capacitive sensing, 
Inertial navigation system. 
 
1. Introduction 
 

      Due to their small size, light weight, low cost and 
low energy consumption, MEMS 
(Microelectromechanical Systems) accelerometers 
have been widely used in smart phones, automobile, 
toys, aerospace and many other applications [1]. 
Most MEMS accelerometers are designed to sense 
acceleration input along single direction. For 
complete inertial navigation in 3D space, 
measurement of acceleration inputs along all three 
directions (X, Y and Z) is required. Hybrid 
integration of three single-axis accelerometers 
aligned along each direction is a straight-forward 
solution. However, it requires precise alignment and 
calibration of three separate accelerometers, which 
can be very challenging. A more efficient solution is 
to design accelerometer which can measure 

acceleration along multiple axes. Various dual-axis 
MEMS accelerometers have been reported [2]-[6]. In 
[2], a MEMS dual-axis capacitive accelerometer with 
pendulum-proof-mass, a gimbal-spring and vertical-
combs sensing electrodes is proposed. In [3], a dual-
axis accelerometer with a single inertial mass 
symmetrically suspended by four pairs of folded 
elastic beams is reported. The four pairs of folded 
beams allow the movable mass to move along both X 
and Y directions due to inertial force. In [4], a high-
sensitivity dual-axis linear accelerometer is fabricated 
with CMOS-MEMS technology. In [5], a dual-axis 
MEMS inertial sensor that utilizes multi-layered 
electroplated gold for an arrayed CMOS-compatible 
MEMS accelerometer is reported. It allows both the 
signal sensing circuitry and the sensing units to be 
fabricated on the same chip. In [6], a dual-axis 
MEMS thermal accelerometer made with front-side 
bulk micromachining and CMOS technology is 
introduced. The accelerometer utilizes thermal 
convection phenomenon to sense the input 
acceleration.  

      In this research, a MEMS dual-axis capacitive 
accelerometer with T-shape beams is proposed. It 
utilizes only two sets of T-shape beams to sense 
acceleration inputs along both X and Y direction in 
device plane. Each T-shape beam contains two folded 
beams and one straight beam. The T-shape structure 
allows the beams to bend along both X and Y 
directions due to input acceleration. The bending 
displacement of the beams is sensed by the 
differential capacitance change of the comb finger 
groups connected to the central movable mass. 
COMSOL Multiphysics is used to simulate the 
sensitivities of the accelerometer along X and Y 
directions. The contour plot of the stress intensity 
distribution for 50g acceleration input is also 
obtained. The proposed MEMS dual-axis 
accelerometer can be combined with a Z-axis 
accelerometer for complete 3D inertial navigation 
system.  

 
2. Design and Analysis 
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