

Multi-Layer Surface Coil Design: Geometry Optimization

Sarra AISSANI (1)(2), Laouès GUENDOUZ(2), Daniel CANET(1)

(1) CRM2, Institut Jean Barriol (FR CNRS 2843), (2) Mesures et architectures électroniques (IJL, UMR 7198, UL-CNRS), Université de Lorraine, France

Introduction

NMR 600MHz

NQR 100kHz-6MHz

MRI 100 MHz

Introduction

NMR 600MHz RF coil
Transmit/receive
near field radiation

NQR 100kHz-6MHz

MRI 100 MHz

Motivation

Volume coil

Saddle coil

Birdcage coil

[&]quot;Optimizing surface coils and the self-shielded gradiometer," B. H. Suits and A. N. Garroway, Journal of Applied Physics 94, 4171-4178 (2003)

Motivation

Volume coil

Saddle coil

Birdcage coil

Surface coil

Spiral

Rectangular

[&]quot;Optimizing surface coils and the self-shielded gradiometer," B. H. Suits and A. N. Garroway, Journal of Applied Physics 94, 4171-4178 (2003)

Motivation

Volume coil

Saddle coil

Birdcage coil

Surface coil

Spiral

Rectangular

Why using multi-layer surface coil?

To improve:

- Immunity to interfering noise sources.
- Quality factor.
- Magnetic field homogeneity within a specific region.

[&]quot;Optimizing surface coils and the self-shielded gradiometer," B. H. Suits and A. N. Garroway, Journal of Applied Physics 94, 4171-4178 (2003)

Motivation

1-Single-layer (principal) coil

 Influence of R_{IN}, S, W and the number of turn N

2-Multi-layer coil

 Distance between layers in addition to R_{IN}, S, W and the number of turn N

Motivation

1-Single-layer (principal) coil

• Influence of R_{IN}, S, W and the number of turn N

2-Multi-layer coil

 Distance between layers in addition to R_{IN}, S, W and the number of turn N

Single-layer surface coil

2D Axisymmetric model

- Thickness of each layer of cooper = 35 μm (PCB Printed Circuit Board)
- Magnetic and electric field
 - → Coil group domain approximation
- Study
 - + Parametric sweep
 - + Frequency domain (3.3 MHz) λ=91m

Single-layer surface coil

Quality factor vs. W

$$Q = L\omega_0/r$$

Parametric sweep: W (0.5,0.5,10)
 S=0.9mm, R_{IN}=0.9mm, N=10

Single-layer surface coil

Quality factor vs. S

$$Q = L\omega_0/r$$

Parametric sweep: S (0.5,0.5,12)
 W=8mm, R_{IN}=0.9mm, N=10

Single-layer surface coil

Quality factor vs. R_{IN}

$$Q = L\omega_0/r$$

Parametric sweep: R_{IN} (1,4,30)
 W=8mm, S=0.9mm, N=10

Single-layer surface coil

Magnetic field homogeneity

• Cut line 2D z=20mm and r =0 to 30mm $^{\times 10^{-5}}$

Single-layer surface coil

Magnetic field homogeneity

r(mm)

Single-layer surface coil

Magnetic field homogeneity

Multi-layer surface coil

Magnetic field

Parametric sweep: S_2 (10,3,28), W_2=8mm,
 R_{IN2}=30mm, N_2=3, d=10mm

- Coil group domain
 - → Reversed current direction

Magnetic field

Out line 2D z=25mm and r=0 to 120mm

Magnetic field

Out line 2D z=25mm and r=0 to 120mm

Magnetic field

Coil length = 3.9 m
 \langle $\lambda/20=4.5 \text{ m}$

Multi-layer surface coil

Magnetic field

Magnetic field

• Parametric sweep: d = (7,1,16), $W_2=8mm$, • Cut line 2D = 25mm and r = 0 to 120mm

 R_{IN2} =30mm, N_2 =3, S_2 =16mm

Magnetic field

• Parametric sweep: d = (7,1,16), W_2=8mm,

 R_{IN2} =30mm, N_2 =3, S_2 =16mm ×10⁻⁵ 11 10 Magnetic flux density, z component (T) 0 16 -2 10 50 60 70 100 110 120 Arc length

$$d = 14 \text{ mm} \rightarrow Q = 528$$

Summary

- Geometry optimization of a single-layer surface coil
 - Compromise
 - + Quality factor and homogeneity of the magnetic field
- Geometry optimization of a multi-layer surface coil
 - → Self shielded coil

Immunity to interfering noise sources

Question?