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Abstract: The thermoacoustic combustion 
instabilities are complex phenomena that may 
occur in steady flow combustion systems that are 
aboard of, e.g., rocket engines or gas turbines. The 
phenomena involve the interaction of chemical 
reactions with fluid-dynamic and propagation of 
pressure waves in the combustion chamber. In 
some cases, combustion instabilities may lead to 
a stable condition (known as “limit-cycle”) 
characterized by pressure oscillations so intense 
that the operation of the engine cannot be 
continued.   
  Over the years, it has been found that a 
numerical method suitable to study this 
phenomenon is to model the propagation of the 
linearized  (“acoustic”) pressure oscillations by 
means of inhomogeneous wave equation in the 
frequency domain and considering the heat 
release fluctuations (𝑞′) produced by the flame 
dynamics as source term.  
  This simulation can be carried out in COMSOL 
Multiphysics through the Pressure Acoustic 
Module (acpr).  
  A Flame Transfer Function (FTF) is usually used 
to model heat release fluctuations as a delayed 
function. Solving the eigenvalue problem, a linear 
stability analysis is performed. By means of this 
methodology, it is possible to estimate frequency, 
wave shape and growth rate of the resonant 
modes. However, a nonlinear analysis must be 
applied in order to estimate the amplitudes of limit 
cycles. To this purpose, the influence of a Non-
Linear Flame Describing Function (NLFDF) 
function is examined. Considering that the 
nonlinear terms can be considered relatively small 
with respect to the linear ones, a weakly non-
linear analysis can be performed to identify the 
process that characterizes the onset and the 
growth oscillations.  
  In the present paper the methodology adopted in 
COMSOL to simulate the non-linear dynamics is 
shown and the results of the application to a 
simple cylindrical combustor are reported. 
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1. Introduction 

 
The mechanisms leading to the onset of 

instability can be grouped into two categories: 
linear and nonlinear. In a linearly unstable system, 
a small perturbation determines the instability. 
This kind of system is generally not observed in 
nature. On the other hand, a nonlinearly unstable 
system can be stable to small perturbations but it 
can become unstable if the initial disturbance is 
larger than some threshold. This behavior is 
known as ‘triggering’ (Juniper, 2011). 

A crucial step in the understanding of the 
thermoacoustic combustion instabilities is the 
model of the heat release fluctuations. These 
instabilities are due to coupling mechanism 
between the unsteady heat release rate and the 
pressure oscillations inside the combustor. In 
order to study these instabilities, heat release 
fluctuations are usually coupled to velocity 
fluctuations through linear correlations. Linear 
flame models are able to predict whether the non-
oscillating steady state of a thermoacoustic 
system is “asymptotically” stable (without 
oscillations) or unstable (increasing oscillations). 
However, linear models describing the system 
behavior are not able to predict triggering 
instabilities and limit cycles. In order to get this 
kind of information, non linearities must be 
introduced into the model and the analysis.  

The behavior of nonlinear systems can be 
reported in relation to the variation of a control 
parameter. The changes in the system dynamics 
are called bifurcations and the parameter values at 
which they occur are called bifurcation points 
(Strogatz, 1994). 

In the years, several techniques have been 
proposed in order to track the bifurcation 
diagrams. In one of them, a systematic variation 
of parameters is carried out and the behavior of 
the system is examined by direct time integration 
(Mariappan & Sujith, 2010). However this 
method is computationally expensive. 

Another method for obtaining the bifurcation 
diagrams is the so-called numerical continuation 
(Jahnke & Culick, 1994). This approach is based 
on the iterative solution of a set of parameterized 
nonlinear equations given an initial guess. The 
diagram is tracked varying a parameter and 
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including the solutions which satisfy the set of 
equations for a given state of the system. The 
unstable limit cycle can also be computed. 
Compared to other methods, it is very efficient in 
obtaining the dependence of the solution from the 
control parameter. However, it takes a long time 
to map the bifurcation diagram and it can be also 
too computationally expensive. Thanks to 
improvements in the method and in the parallel 
computing, continuation methods are likely to 
become important tools in nonlinear analysis of 
thermoacoustic (Juniper M. , 2012). 

The use of low-order network models to map 
the bifurcation diagram as a function of a control 
parameter has been shown by Campa and Juniper 
(Campa & Juniper, 2012). Instead of numerically 
integrate the fully non-linear equations governing 
the phenomenon, the authors proposed a weakly 
nonlinear approach consisting in a linear 
eigenvalue analysis around a non-linear steady 
state of the system. This approach, less 
computationally expensive than continuation 
method will be used in this work 

The use of a framework based on the finite 
element method (FEM) to study nonlinear flame 
models was proposed by Pankiewitz and 
Sattelmayer  (Pankiewitz & Sattelmayer, 2003), 
who examined in the time domain a three-
dimensional combustion chamber, predicting the 
amplitude of limit cycles determined by a 
nonlinear flame model. 

Within a similar FEM framework, the 
feasibility of mapping the bifurcation diagrams in 
the frequency domain is shown in this paper. The 
bases of this framework are described in previous 
works of ours considering linear flame models 
(Camporeale, Fortunato, & Campa, 2011). 
Making use of the Pressure Acoustic Physics 
Interface (acpr) of the Acoustics Module of 
COMSOL Multiphysics (Campa & Camporeale, 
A novel FEM method for predicting 
thermoacoustic combustion instability, 2009), the 
approach numerically solves the differential 
equation problem converted in a complex 
eigenvalue problem in the frequency domain. The 
eigenvalue problem is solved by means of a 
linearization under the hypothesis of small 
oscillations. From the complex eigenvalues of the 
system it is possible to ascertain if the 
corresponding mode is unstable or if the 
oscillations will decrease in time, i.e. the mode is 
stable (Camporeale, Fortunato, & Campa, 2011). 
Through the proposed approach it is possible to 

perform a weakly nonlinear study and to map 
bifurcation diagrams not only for simple 
configurations, but also for industrial complex 
configurations.  

In the first section of the paper the bases of the 
nonlinear analysis are explained. In the second 
section the FEM approach is described, 
explaining the procedure adopted to track the 
bifurcation diagrams using COMSOL 
Multiphysics. In the third section, the results are 
shown, analyzing the bifurcations occurring in a 
simple Rijke tube for two di 
different nonlinear flames. 
 
2. Nonlinear Analysis 
 
Figure 1 shows two different types of bifurcation 
behaviors that the system can undergo when a 
control parameter R varies. The variable on the y-
axis is the limit cycle amplitude. At low values of 
R, the amplitude is zero that means that the system 
is stable and no combustion dynamics are 
registered. (solid line in Fig. 1). When R reaches 
the Hopf bifurcation point, the system becomes 
unstable in the sense that, increasing the value of 
the control parameter, the condition at zero 
amplitude becomes unstable (dashed line in Fig. 
1) and the system start to oscillate with increasing 
amplitude until the limit cycle is reached (solid 
line at non-zero amplitude).  In the supercritical 
bifurcation (Fig. 1(a)), with increasing R beyond 
the Hopf point (see red arrows in Fig. 1(a)), a 
gradually increase of the limit cycle amplitude is 
obtained. In the subcritical bifurcation (Fig. 1(b)), 
while gradually increasing the parameter R, there 
is a jump from zero to large amplitude when the 
Hopf point is crossed (see red arrows in Fig. 1(b)).  

In the supercritical bifurcation, while 
decreasing R, the limit cycle amplitude is 
gradually reduced when R approaches the Hopf 
point and, then, returns to zero.  In the subcritical 
bifurcation, instead, once the limit cycle is 
established,  even for values of R lower than the 
one corresponding to the Hopf point, the 
amplitude of the limit cycle continue to follow the 
large amplitude branch, until the fold point is 
reached. Further decreasing R, there is a jump to 
zero as shown by the blue arrow path in Fig. 1(b). 
The dashed line at non-zero amplitudes in Fig. 
1(b) is the locus of the unstable equilibrium point 
of the system (Strogatz, 1994). Then, in a 
thermoacoustic system characterized by a 
subcritical bifurcation, even when it is in a 
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linearly stable condition, a limit cycle condition 
may be “triggered” by a sufficiently large impulse 
(Juniper M. , 2012). 

 
 (a) 

 
 (b) 

Figure 1. Steady state oscillation amplitude as a 
function of R for (a) a supercritical bifurcation and (b) 
a subcritical bifurcation  (Campa & Juniper, 2012). As 
the control parameter R is increased, the system follows 
the red arrow path. As it is decreased, the system 
follows the blue arrow path. 
 
3. Finite Element Method Approach 
 
The nonlinear analysis is carried out by using the 
Pressure Acoustic Physics Interface (acpr) of the 
Acoustics Module of COMSOL Multiphysics. 
The code, based on a Finite Element Method 
(FEM) is able to analyze three-dimensional 
geometries.  This approach numerically solves the 
differential equation problem converted in a 
complex eigenvalue problem in the frequency 
domain and the stability analysis can be 
conducted. 
 

The fluid is regarded as an ideal gas. The 
effects of viscosity, thermal diffusivity and heat 
transfer are neglected; the mean pressure is 
assumed uniform in the domain. The mean flow 
velocity �̅� is much lower than the speed of sound, 
so its influence on the propagation of the pressure 
waves has been neglected. Under such 

hypotheses, in presence of heat fluctuations, the 
inhomogeneous wave equation can be obtained 
(Dowling & Stow, Acoustic analysis of gas 
turbine combustors, 2003) 
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where 𝑝′ is the pressure fluctuation, 𝑞′ is the heat 
release fluctuation,  is the ratio of specific heats, 
 is the density and c is the speed of sound. Under 
the assumption of zero mean flow velocity, 
neglecting the effects of the temperature 
variation, no entropy waves are considered and 
the pressure fluctuations are related to the velocity 
fluctuations by 
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Heat release fluctuations 𝑞′ are coupled to the 
velocity fluctuations 𝑢′ taken at the injection point 
upstream the flame zone with a time delay . In 
the linear case and in the time domain it means 

𝑞′

�̅�
= −𝜅

𝑢𝑖
′ (𝑡−𝜏) 

𝑢𝑖̅̅ ̅
      (3)            

where subscript i refers to the injection point and 
 is the intensity index, which represents a 
dimensionless parameter of proportionality 
between the heat release fluctuations and the 
velocity fluctuations. 
For the search of the eigenvalues and the 
eigenmodes of the system, the analysis is 
performed in the frequency domain and the 
fluctuating variables are expressed by complex 
functions of time and position with a sinusoidal 
form: 𝑝′ = �̂�exp (𝑖𝜔𝑡), where 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖  the 
complex frequency. Its real part r gives the 
frequency of oscillations, while the imaginary 
part i provides the growth rate at which the 
amplitude of the oscillations increases per cycle. 
The linear flame model in the frequency domain, 
assuming a harmonic form of the fluctuation 
variables, can be written as 

𝑞 ̂

�̅�
= −𝜅 

𝑢�̂�

𝑢𝑖̅̅ ̅
exp (−𝑖𝜔𝜏)      (4) 

 Then, starting from Eq. (1) the Helmholtz 
equation in the frequency domain governing the 
acoustic pressure waves can be written 
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where 𝜆 = −𝑖𝜔 is the eigenvalue. 
 
3.1 Nonlinear Flame Model 
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Nonlinearities are introduced in the flame model. 
An evolution of the usual - model is used 
(Crocco & Zheng, 1956).  For the nonlinear flame 
model, the flame transfer function can be obtained 
following the procedure proposed by Dowling 
(Dowling, A kinematic model of ducted flame, 
1999) and recalled in (Campa & Juniper, 
Obtaining bifurcation diagrams with a 
thermoacoustic network model, 2012). The 
nonlinear flame transfer function can be 
expressed as multiple of the linear flame transfer 
function and a function of frequency and 
oscillations amplitude 𝑟 = | �̂� �̅�⁄ | 
 

𝑇𝑓𝑙𝑎𝑚𝑒
𝑁𝐿 (𝜔, 𝑟) = 𝑇𝑓𝑙𝑎𝑚𝑒

𝐿 (𝜔, 𝑟) ∙ 𝑁𝐹𝑇𝐹(𝑟) (6) 
 

where the (linear) flame transfer function is 
defined by 
 

𝑇𝑓𝑙𝑎𝑚𝑒
𝐿 (𝜔) =

�̂� �̅�⁄

𝑞�̂� 𝑞�̅�⁄
= −𝜅 exp (−𝑖𝜔𝜏) (7)  

 

and NFTF is the function deriving from the 
nonlinearity introduced into the flame model 
(Campa & Juniper, Obtaining bifurcation 
diagrams with a thermoacoustic network model, 
2012).  

The appropriate analysis for determining the 
nature of a Hopf point is a weakly nonlinear 
analysis. The procedure is a continuation method 
similar to the one described by Jahnke and Culick 
(Jahnke & Culick, 1994). The general technique 
is based on fixing all parameters of the system but 
one and tracing the steady states of the system as 
a function of this parameter. In this work, the 
control parameter of the bifurcation diagram is the 
intensity index , while the only not fixed 
parameter is the amplitude r of the limit cycle 
oscillations. It implies that, each time a value of 
the amplitude r is assumed to detect the solutions 
of the eigenvalue problem, a linear model is 
solved. In fact, if r is fixed, the NFTF function 
degenerates to a constant value and the transfer 
matrix become linear. As a consequence, although 
the flame model is nonlinear, the eigenvalue 
problem is solved for a linear flame model 
detecting each point of bifurcation diagram.  

Firstly, the value of corresponding to the 
Hopf bifurcation point, Hopf, is searched for, 
setting to zero the amplitude r, so that the flame 
model becomes linear. Then, for values of  
higher than Hopf, the regula falsi method is 
adopted to detect the point corresponding to zero 

growth rate, i.e., a limit cycle condition. The 
entire procedure has been automatized using 
MATLAB® scripts integrated in COMSOL 
Multiphysics with LiveLink™ for MATLAB®. 
 
4. Application 

 
The previously described procedure is used to 
obtain the bifurcation diagrams of a simple Rijke 
tube assuming two different laws for the nonlinear 
flame transfer function: a third-order and a five-
order polynomial law. 

Figure 2 shows the computational domain and 
the mesh used for simulations. Open-end inlet and 
outlet boundary conditions, 𝑝′ = 0, are 
considered. The dominion is subdivided in two 
parts representing the plenum and the combustion 
chamber; the location of the heat release zone is 
highlighted in blue. A uniform temperature of 300 
K and of 700K is assumed for plenum and 
combustion chamber, respectively. The 
temperature increases linearly from 300 K to 700 
K across the combustion zone. The heat release 
fluctuations 𝑞′ are coupled to the velocity 
fluctuations 𝑢′ with a time delay , which is 
assumed to be constant.  

 

Figure 2. Computational mesh of the simple Rijke 
tube. 
 
4.1 Damping 

 

All the mechanisms of damping of acoustic 
energy can be grouped into three categories: 
convection through domain boundaries, thermal 
and viscous dissipation, energy transfer to higher 
modes. Due to the demonstrative nature of this 
application, only the first two damping 
mechanisms are discussed here. 

In order to evaluate the acoustic energy losses 
due to the boundary condition, let’s consider the 
conservation equation of the acoustic energy 
(Poinsot & Veynante, 2001) 

𝜕𝑒1

𝜕𝑡
+ ∇ ∙ 𝑓1 = 0    (8) 
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where 𝑒1is the acoustic energy and 𝑓1is the flux 
defined as 𝑓1 = 𝑝 𝑢1⃗⃗⃗⃗  . Eq. (8) shows that the 
changes in the total energy are only due to fluxes 
crossing the boundaries. For the system examined 
an open end boundary condition is set at the ends 
of the tube (𝑝′ = 0). So, the flux of acoustic 
energy is null at both boundaries which means 
that the system cannot dissipate acoustic energy 
through the boundaries. The acoustic energy 
initially present in the computational domain is 
constant. 

Viscous and thermal losses through boundary 
layers are modelled as the first derivative of 𝑝′ 
multiplied by a suitable damping coefficient 𝜁, 
following the procedure described in (Munjal, 
1987). Introducing this term, the one-dimensional 
inhomogeneous damped wave equation is derived 
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where R is the radius of the duct. The damping 
coefficient for j-th mode is modelled as ζj =

c1j
2 + c2j

1 2⁄   where 𝑐1 and 𝑐2 are constant for 
each mode. In this study, the maximum values 
assumed are 0.05 and 0.01, respectively. More 
information about the evaluation of these 
coefficient can be found in (Matveev, 2003). 
 
4.2 First nonlinear flame model 

 

 The first nonlinear flame model considered in 
this work is a third-order polynomial law 
 

𝑞′(𝑡)

�̅�
= −𝜅 [𝜇2 (

𝑢′(𝑡−𝜏)

𝑢
)
3

+ 𝜇0
𝑢′(𝑡−𝜏)

𝑢
]    (10) 

 

where the coefficients 𝜇2and 𝜇0 are equal to -1 
and 0.5, respectively. The function NFTF for this 
model results 
 

𝑁𝐹𝑇𝐹 =  
3

4
𝜇2𝑟

2 + 𝜇0.        (11) 
 

The pattern of the nonlinear flame model in Eq. 
(10) is shown in Fig. 3(a), whereas the NFTF is 
shown in Fig. 3(b). The NFTF is considered only 
when is positive and for positive values of the 
amplitude r to ensure the physical meaning of the 
flame model. 

A supercritical bifurcation behavior of the 
system can be observed in Fig. 4. For both values 
of delay time analyzed, when the damping is 
neglected (, the system is unstable for any 
value of the control parameter Furthermore, the 

amplitude of the limit cycle is constant and 
corresponds to the value that saturates the NFTF. 
In this case r = 0.81 (blue dashed line in Fig. 4). 

 
(a) 

 

 
(b) 

Figure 3. (a) Flame model (tracked for  = 0.25) and 
(b) NFTF function 
 

The bifurcation diagram is referred to the first 
axial mode and tracked for three different values 
of the damping coefficient (),  = 0;  = 0:05;  
= 0:09, assuming two different values of the time 
delay  (8 and 11 ms). In particular, the value of 
11 ms of 𝜏 is the delay time at which the system 
shows the maximum growth rate with linear FTF.  

When considering  non-zero, the position of 
the Hopf point moves towards higher values of the 
control parameter  as the damping level 
increases. With = 11 ms, (solid lines in Fig. 4), 
the bifurcation occurs at 𝜅𝐻= 0.12 with  = 0.03 
and 𝜅𝐻= 0.33 with  = 0.09. Increasing , an 
increase of the energy dissipation rate causes a 
reduction of the amplitude of oscillations. Due to 
saturation of the heat release, regardless of the 
damping level, at higher values of  the amplitude 
of the stable limit cycle solution tends asymptotic 
to the value which nullify the NFTF. This result is 
highlighted in the zoom frame of Fig. 4. The 
influence of the time delay is qualitatively the 
same at all the damping levels: for a fixed value 
of , with a time delay of 8 ms, a lower limit cycle 
amplitude is registered (dot–dashed lines). 
Quantitatively this behavior is not the same for 
different value of damping; the amplitude 
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reduction is greater for systems with higher 
damping (dot–dashed lines vs continuous lines). 

 
 

Figure 4. Bifurcation diagram for three value of 
damping coefficient  assuming two values of time 
delay  
 
4.2 Second nonlinear flame model 
 
A fifth-order polynomial law is assumed as 
nonlinear flame model 
 

𝑞′(𝑡)

�̅�
= −𝜅 [𝜇4 (

𝑢′(𝑡−𝜏)

�̅�
)
5

+ 𝜇2 (
(𝑡−𝜏)

�̅�
)
3

+ 𝜇0
𝑢′(𝑡−𝜏)

�̅�
]         (12) 

 

where 𝜇4 ,  𝜇2  and 𝜇0 are coefficients equal to -1, 
1 and 0.2, respectively. The function NFTF for 
this model results to be 
 

𝑁𝐹𝑇𝐹 =  
5

8
𝜇4𝑟

4 +
3

4
𝜇2𝑟

2 + 𝜇0         (13) 
 

The pattern of the nonlinear flame model in Eq. 
(12) is shown in Fig. 5(a), whereas in Fig. 5(b) the 
NFTF is shown.  
The bifurcation diagram for this case is shown in 
Fig. 6. A subcritical bifurcation is registered in 
this case. A solid line is used for stable points, 
while a dashed line is used for unstable points. 
The influence of the time on the bifurcation 
diagrams is investigated for only one value of 
damping coefficient =0.09 and two different 
values of 11 and 9 ms.  

As registered for the previous case, the 
influence of is on the position of the Hopf point. 
The fold point seems not be influenced by the time 
delay. Again, at high values of the influence of 
the damping coefficient on the amplitude of the 
limit cycle solution tends to become very small 
(differences highlighted in the zoom frame). 

 
 

 
(a) 

 
(b) 

Figure 5. (a) Flame model (tracked for  = 0.25) and 
(b) NFTF function 
 

 
Figure 6.  Bifurcation diagram for two different value 
of time delay for the nonlinear flame model 
 
4. Conclusions 
A weak nonlinear analysis has been performed to 
study the nonlinear behavior of a simple 
longitudinal combustion system. The nonlinear 
behavior of the system is considered within the 
flame model and a damping model. Heat release 
fluctuations are coupled to the velocity 
fluctuations through a nonlinear polynomial 
correlation. The behavior of the system is 
determined by the nature of the Hopf bifurcation. 
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The Pressure Acoustic Physics Interface (acpr) of 
the Acoustics Module of COMSOL Multiphysics 
is used to track the bifurcation diagrams.  

The kind of bifurcation depends on the 
nonlinear flame model, independently of the 
geometrical configuration examined, following 
the predictions of the weakly nonlinear analysis. 
The influence of the time delay and the damping 
coefficient is investigated. The main points are: 

 
1. the amplitude of the limit cycle solutions and 

bifurcation point is greatly influenced by the 
rate of acoustic energy dissipated; 
 

2. due to saturation of the heat release, 
regardless of the damping level, at high 
values of  the amplitude of the stable limit 
cycle solution tends asymptotic to the value 
which nullify the NFTF; 
 

3. time delay has a significant influence on the 
Hopf point. The minimum value of  at 
which the bifurcation occurs is obtained with 
the value of the time delay that causes the 
resonant mode with the greatest growth rate 

 

Considering what has been said, the proposed 
approach proves to be able to treat nonlinear 
problems and to be applied to complex geometries 
in an industrial environment. Numerical and 
experimental data can be introduced into the 
shown framework, performing parametric 
analyses which can be helpful both in the design 
and in the check stage of a burner. 
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