Thermal-Electrical Study of an Ultra-fast Disconnect Switch with a Piezoelectric Actuator

L. Graber, C. Widener, S. Smith, M. Steurer

Center for Advanced Power Systems
Florida State University

Need for a High Speed Mechanical Disconnect Switch

- Hybrid circuit breakers
- Low conduction losses by bypassing the semiconductors
- Only as fast as the mechanical switch
- No arcing in the mechanical switch

Figure by FREEDM Systems Center

COMSOL
CONEERENCE 2014BOSTON

Need for a High Speed Mechanical Disconnect Switch

- The conduction losses drop:
- From 4 kW to 1.8 kW by using SiC ETOs instead of Si IGBTs
- From 1.8 kW to 900 W by using advanced symmectric GTOs
- From 900 W to 10 W by adding a mechanical switch

Figure by FREEDM Systems Center

COMSOL CONFERENCE
 Design of the Switch

Patents pending

Actuator and Frame

Surface: von Mises stress (MPa)
A 15.8

Surface: Total displacement ($\mu \mathrm{m}$)

Surface: von Mises stress (MPa)

Mesh

- Terminated with ground at the end of the "current path"

Time=0 s Multislice: Electric potential (mV)

- Current 200 A
- Contact resistance for solder joints and contact tabs (thin resistive layer)
- Surface to ambient emissivity 0.85 (in vacuum)

Time $=0 \mathrm{~s}$ Volume: Resistive losses $\left(\mathrm{W} / \mathrm{m}^{3}\right)$

Time $=0$ s Surface: Temperature (K)

Time=200 s Surface: Temperature (K)

Time $=400$ s Surface: Temperature (K)

Time=600 s Surface: Temperature (K)

Time=800 s Surface: Temperature (K)

Time $=1000$ s Surface: Temperature (K)

Time $=1200$ s Surface: Temperature (K)

Maximum temperature
(increase by 5-10 K not an issue)

- Assuming 15 kV uniformly split
- Contacts separated
- Mesh density refined
- Work function $\sim 4.5 \mathrm{eV}$
(or $1000 \mathrm{kV} / \mathrm{mm}$ at RT) leads to field emission

y

$z=X$

Conclusion

- Finite element analysis proved to be useful for
- Design of insulator frame (narrow regions)
- Dimensions of conductors
- Material selection (especially contact tabs)
- Next steps
- Implement dynamic model (contact bouncing?)
- Implement more accurate, multiphysical contact model
- Validate model by measuring strain and temperature increase
- Finish demonstrator unit

Acknowledgment

- This project is funded through the National Science Foundation through the FREEDM Systems Center under grant EEC-08212121
- Dr. Alex Huang \& team, NC State University

