COMSOLを用いたマイクロ・ナノマシンの設計・開発

横浜国立大学大学院 工学研究院 丸尾 昭二

COMSOLカンファレンス東京 2013.12.6

Outline

- 1. Introduction (3D printing & microstereolithography)
- 2. Laser-driven micromachines produced by two-photon microfabrication
- 3. Nanowire manipulation for nanofluidic application
- 4. Three-dimensional molding based on microstereolithography
- 5. Vibration energy harvester using a spiral piezoelectric element
- 6. Conclusions

Two-photon microfabrication

Two-photon microfabrication

S. Maruo, O. Nakamura, S. Kawata, Opt.Lett. 22, 132 (1997)

Times Cited: 984

3D movable micromachines

Appl. Phys. Lett. 82, 133 (2003).

J MEMS 12, 533 (2003).

Optically driven micropumps

Lobed type

Viscous type

Time charad lacer conning

Time-shared laser scanning

APL 89, 144101 (2006).

APL**91**, 084101 (2007).

Microflow analysis using FEM

Model

Same size of the prototype of the micropump

📕 15000 mesh

Parameters Fluid: Glycol ether ester Density:960[kg/m³] Viscousity:1.92×10⁻³[Pa•s]

Boundary conditions

- No-load at inlet and outlet
- No slip at the surface of rotor & channel

Flow velocity is applied at the surface of the rotor

COMSOL ver.3.2

Microflow analysis of the first prototype of the viscous micropump

Channel width dependence

Analysis of optical force exerted on a tilted blade

Blade angle dependence of lateral optical force

Optical intensity distribution

Blade angle dependence

Maximum lateral force was obtained at a 43 degrees angle.

Spiral piezoelectric element produced by 3D ceramic molding

Sensors and Actuators A 200, 31–36 (2013).

Conclusions

Development of optically driven microfluidic devices

- Laser scanning, asymmetric rotors, optical vortex Optical manipulation of a single silver nanowire
- Rotation, translation, alignment of nanowires
- Development of a piezoelectric energy harvester
- •Stress analysis, Surface potential analysis, device design

Multiphysics analysis using COMSOL

Two-photon microfabrication & 3D molding techniques are promising technologies to produce functional 3D micro/nano devices