

1

COMSOL在電化學的應用

李碩仁 院長

元智大學 工程學院

COMSOL CONFERENCE Taipei 2013

目錄

● 電化學的多物理場

- 電化學的相關製程
 - 電化學加工的基本原理
 - 電解加工(EMM)
 - 電化學機械拋光(ECMP)
 - 電解抛光(EP)
- ●精微電化學加工
 - 微電壓軸承治具設計與製程分析
- ●精微電解加工
 - 微孔平衡間隙預測研究
- ●精微電解加工
 - 電解去毛邊應用

●總結

電化學的多物理場

• 於極間電解液之靜電場控制方程式方程式 (電場、熱場) $-\nabla \cdot (\kappa \nabla V) = 0$ 其中:電位能V 電場E 電流密度 導電度 K 焦耳熱 $Q_h \stackrel{J}{=} E \cdot J_n$

- 於極間電解液之氫氣濃度控制方程式 (Chemical species transports) $\rho \frac{\partial c}{\partial t} + \nabla \cdot (D \nabla c) = -v \cdot \nabla c$ 其中:氫氣濃度 *c* 擴散係數*D*
- 於極間電解液之對流與傳導物理場控制方程式(流場、熱場) $\nabla \cdot (-k) \nabla T_f = Q_h - \rho C_p v \cdot \nabla T_f$ 其中:溫度 T_f 密度 ρ 比容 C_p
- 加工材料表面的網格移動速度與電流密度分佈成正比

 $u = -kJ_n$ 其中: k電化學加工率(ECM rate)

電化學的相關製程

• ElectroPolishing

 Improve morphology, chemical composition and corrosion resistance.

Electrochemical Micro-Machining

- Fabricate meso/micro scale features.

ElectroChemical Mechanical Polishing

Increased flatness, roughness and surface properties.

• Electrolytic surface roughening

- Improve morphology, roughen.

Electro plating

- surface coating.

電化學加工的基本原理

- A current passes from the anode, where metal on the surface is oxidized and dissolved in the electrolyte, to the cathode. At the cathode, a reduction reaction occurs, which produces H2.
- Reversal of electroplating process.
- Anodic dissolution.
- **Consumes water only, theoretically.**
- Zero stress.
- No degradation of the anode electrode.
- **Smooth surface.**
- No Burr.

電化學的相關製程-EMM/ECM Electrochemical Micro Machining (EMM)

- Electrochemical Micro-Machining (EMM) deals with meso/micro scale features.
- Anodic dissolution of conductive workpiece.
- Multi-physics of electric field, flow field and chemical reaction.

電化學的相關製程-EMM Results

Die Sinking:

Photo masking :

電化學的相關製程-ECMP

ElectroChemical Mechanical Polishing (ECMP)

- Mechanical polishing enhanced by electrochemical reaction on surface.
- Metallic surface layer is transformed into $M(OH)_n$.
- $M(OH)_n$ is brittle and loose, can be polished more efficiently.
- CMP for Si wafer vs. ECMP for metals.

電化學的相關製程-ECMP Results

Optical Microscope (X 50)

Original : Ra 0.05µm

After ECMP : Ra 0.02µm

電化學的相關製程-EP

ElectroChemicalPolishing (EP)

- Smoothing through higher electric distribution at peaks.
- Selective dissolution in viscous layer.
- Cr rich passivation layer.

電化學的相關製程-EP Results

精微電化學加工 微電壓軸承治具設計與製程分析

97年台中金工中心合作研究計畫

精微電化學加工-微電壓軸承

- 動壓軸承其原理是利用微細溝槽的流力特性,促使軸承 與軸承間隙中充滿潤滑流體而達到充分潤滑與建壓效果, 為了將間隙細的流體能保存住,軸承表面上刻有魚骨形 狀(herring bone)的溝槽,其目的除了讓主軸旋轉時流體 壓力升高外,更可使流體集中於內部達到防漏的功能。
- 微電化學加工(EMM)無應力刀具不易損耗、加工工件不受金屬材料之硬度、強度等限制,故可克服傳統加工所無法達成之高硬度工件加工,亦可對外型複雜(如動壓軸承溝槽)之工件進行一次加工成型。
- 本研究係模擬電化學加工作為微動壓 軸承加工機制,利用加工陰極在待加 工物件內壁上,作出動壓軸承的紋路。

電化學加工原理

- 工件連接於直流電源的正極,稱為陽極;刀具連接於直流電源的負極,稱為
- 電解液以較高的速度從兩極間的間隙中流過,使兩極形成導電通路,並在電源電壓的作用下產生電流
- 被加工工件表面金屬將不 斷產生電化學反應而溶解 到電解液中,電解之產物 則被高速的電解液帶走。

為電化學加工成型原理示意圖

研究程序

其中: k電化學加工率(ECM rate)

15

微孔洞模擬與實測

微孔洞模擬電場分佈

•電化學加工常數k=1×10⁻¹¹(m³/C)。

微孔洞模擬加工量分佈

•電解液的導電度9.74m/S。

•陽極電壓為3V、陰極為接地。

•電化學加工常數k=1×10⁻¹¹(m³/C)。

微孔洞加工模擬結果

最大電場(10 ⁵ V/m)							40 -								
時間	1s	2s	3s	4s	5s		35 -								
2D	3.6	3.27	3.28	3.25	3.27	最	30 -								
3D	2.02	2.02	2.02	2.02	1.99	大	25								
						加	20 -								→ 2D
						L	15 -								
加丁 深 庄 (um)					深	10 -									
時間	18	$\frac{2s}{2s}$	$\frac{3}{3}$	48	58	度	5 -								
2D	10.97	18.88	25.37	30.96	35.97	μπ	0 -				1	I	1		
3D	10.99	18.87	25.55	31.3	36.48		()	1	2	3	4	5	6	時間(s)
	電壓3V加工常數k=1e-11m ³ /C														

最大加工深度與時間關係

微孔洞電化學加工實驗

孔洞深度為38μm 加工時間5sec

加工電壓3V 脈衝寬度 0μs

共焦顯微鏡性能

孔洞深度為50μm 加工電壓4V 加工時間25sec 脈衝寬度100μs

項目₽	規格₽			
倍率₽	200~2000#			
觀察/量測範圍₽	水平1479μm√			
	垂直 1106μm⇒			
高度量测範圍₽	<u>7nm</u> ₽			
高度量测解析度₽	0. 01 µ m=			
光學變焦₽	2倍、4倍↔			
数位變焦₽	2倍、3倍↔			
X-Y 平台行程₽	70mm*70mm≁			
Z 平台行程↔	28mm+2			
日平台旋轉₽	360'~			

微孔洞模擬及實驗的比較

編號	加工深度(µm)
2D模擬	35.97
3D模擬	36.48
實驗	38

•電解液的導電度9.74m/S。 •陽極電壓為3V、陰極為接地。 •電化學加工常數k=1×10⁻¹¹(m³/C)。 •加工時間5 sec。

微孔洞加工模擬結果討論

- 在電化學加工常數設k=1×10⁻¹¹(m³/C), 2D及3D孔洞電化學 加工模擬接近實驗量測結果。
- 2D模型最大電場大於3D模型電場,最大電場值都發生在 陰極刀具表面隨著時間增加其變化不大。
- 2D模型最大加工深度略小於3D模型,最大加工深度都隨 著時間增加而增加,但是不呈線性關係,最大加工深度增 加率隨著時間增加而逐漸減少。這是因為加工深度增加, 陰極刀具表面及陽極工件表面間隙增加,減少陽極工件表 面電流密度分佈。
- 使用2D、3D模擬及實驗(共焦顯微鏡)出的最大加工深度接近及孔洞幾何外形相似,這可以確認使用COMSOL 3D模型及參數可以應用於微動壓軸承凹槽電化學加工分析。

微動壓軸承夾治具設計與製程分析

微動壓軸承夾治具設計與製程分析

微動壓軸承邊界條件

BB'剖面電場分佈-加工深度10µm

- 電解液的導電度9.74m/S。
- 陽極電壓為3V、陰極為接地。
- 電化學加工常數k=1×10⁻¹¹(m³/C)。

BB'剖面加工深度-加工深度10µm

- 電解液的導電度9.74m/S。
- 陽極電壓為3V、陰極為接地。
- 電化學加工常數k=1×10⁻¹¹(m³/C)。

微動壓軸承各模型計算結果-加工深度10µm

加工模型(加工電壓3V)	加工時間	擴孔	最大電場
間隙50μm陽刻加工	1.68 <i>s</i>	509 µm	8.41×10 ⁴ V/m
間隙50µm陰刻加工	2.60 <i>s</i>	500 µm	8.72×10 ⁴ V/m
間隙25μm陽刻加工	0.85 s	433 µm	1.73×10 ⁵ V/m
間隙25μm陰刻加工	1.68 s	426 µm	1.48×10 ⁵ V/m

● 最大加工深度10µm

流場分析

 目的: 分析平衡間隙及陰極 加工方法對流場及加工的 影響。
 邊界條件: 流場入口速度為1m/s

出口壓力為1大氣壓力。流體有限元素模型及邊界條件 流場分析結果 流場分析結果剖面

電解液流體性質:
 密度p=1081.9kg/m³
 動黏滯性 η=1.01 × 10⁻³Pa · s 。 $\nabla \cdot u = 0$ 流場微分方程式(PDE)
 $\rho u \cdot \nabla u = \nabla \cdot [-pI + \eta (\nabla u + (\nabla u)^T)]$

動壓軸承流場流速分佈

- 平衡間隙越小電解液排削及更新功能越差。
- 陽刻陰極刀具會因流場極間速度分佈一致使電解液濃度均匀
 ,所加工出工件表面品質優於陰刻陰極刀具。

微動壓軸承電壓脈衝分析I

● 目的:

為使分析更貼近真實狀況將模型由平面改為曲面, 並探討脈衝電壓對加工時間影響。

● 改變的參數包含:

1.因為陰極電極製作只能陰刻。
 2.只考慮電極的電壓脈衝。

平衡間隙(µm)	25				50			
加工電壓(V)	電壓(V) 2 3		4	5	2	3 4		5
脈衝頻率(Hz)	0	$0 \cdot 1 \cdot 5 \cdot 10 \cdot 15$	0	0	0	$0 \cdot 1 \cdot 5 \cdot 10 \cdot 15$	0	0

微動壓軸承電壓脈衝分析I

微動壓軸承電壓脈衝分析I

微動壓軸承電壓脈衝分析I結果討論

電 壓 V	加工時 間 (S)	加工深度 (µm)	擴孔尺 寸 (μm)	最大電場 (x10 ⁵ V/m)
5	0.8	10.98	265	3.22
4	1	10.98	264	2.58
3	1.2	10.89	262	1.88
2	2	10.98	267	1.29

 改變電壓脈衝頻率參數分析結果 (平衡間隙50μm、電壓3V)

脈衝頻率 (H z)	加工時間 (s)	加工深度 (µm)	最大電場 (x10 ⁵ V/m)
1	4	10.54	0.986
5	4	10.54	0.984
10	4	10.54	0.973
15	4	10.54	0.986

微動壓軸承電壓脈衝分析II

微動壓軸承加工實測與模擬比對

電化學加工模擬:

 使用與實際加工相同尺寸之動壓軸承進行模擬,為了 減少分析所需計算成本,使用半V字形溝槽軸承模型。

加工參數:

- 模擬所使用的加工參數為:
 - 1. 加工電壓7V。
 - 2. 平衡間隙50µm。
 - 使用脈衝電壓加工,但是因受限電腦計算能力與 軟體功能,電壓脈衝只有1000Hz,脈衝時間配 比:500µs:500µs。

動壓軸承剖面

待測影像及剖面位置

干涉物鏡掃描出之表面形貌圖

電化學加工表面形貌模擬位置示意圖

40µm

Α

AA'剖面加工表面形貌及加工深度分佈模擬圖

局部放大圖

動壓軸承電化學實際加工及模擬結果

截面	加工溝槽寬度 (μm)	加工深度 (µm)	加工時間 (s)
模擬	220	11.11	2
實際	170	11.08	10

模擬表面形貌輪廓

結論

- 從微動壓軸承流場分析中可知平衡間隙50µm,陽刻加工之 陰極工具其流速分佈均匀使加工品質改善但是增加平衡間 隙會增加電阻及減少電流密度降低加工效率。
- 固定加工深度,加工電壓越大電場值越大雖然加工時間減 少但是容易造成尺寸過切造成精度減少,所以建議使用低 電壓如2V加工。
- 使用脈衝電壓,雖然會加倍加工時間但是會降低最大電場 值,可避免加工尺寸過切提高加工精度。

由上述結論建議使用低電壓加工2V及高頻脈衝電壓、低 平衡間隙25μm及陽刻陰極刀具等參數組合可得到較佳加工品 質,但陽刻加工技術困難有待於克服,且必須注意平衡間隙 25μm電解液排削及更新的能力。

精微電解加工 微孔平衡間隙預測研究

101年台中金工中心合作研究計畫

The Problem Statements

The current product design trends of "light, thin, short, and small", It necessitates the development of micro-technologies such as micro-machining, micro-ECM, micro-EDM, laser beam machining, photo-etching, and EBM, etc.

Micro-structures such as micro holes, fine grooves, micro channels and micro surface texture are essential geometrical profile for micro-components.

- Micro cylindricity hole Φ:1.5mm L:5mm
- Cylindricity spec. 1 μm
- Concentricity spec. 5 μm

 $(\, {\rm ECM} \ {\rm broaching} \ {\rm process} \,)$

The approaches

- Simulation by COMSOL Multi-Physics
 - AC/DC
 - Acoustics
 - Chemical species transports
 - Fluid Flow
 - Heat transfer
 - Structural Mechanics
- Pre screening by electrolyte temperature
 - Joule heating model
 - Laminar flow model
- Tool design and process parameter simulation
 - Cathode tool
 - Voltage, fluid pressure, process time
- Machining profile simulation
 - Cylindricity of front sectional profile
 - Concentricity of cross sectional profile

Analysis model by COMSOL

• Simulation by COMSOL

- AC/DC
- Fluid Flow
- Heat transfer
- Structural deform

• Material property:

	Electrolyte 15%Na ₂ NO ₃ (aq)	Cathode tool & Workpiece (SS304)
Density (kg/m ³)	1050	8000
Specific heat (J/kg.K)	4200	500
Thermal conductivity (W/m.K)	0.0015T+0.1689	6.7422+0.2865T ⁻¹
Electic Conductivity (S/m)	K=9.496[1+0.08(T-T ₀)] ; T_0 =293.15K	1.38x10 ⁶
Viscosity (Pa.s)	0.001	

• Conditions:

- Pressure:100 Pa and 10,000 Pa
- Voltage: 8 V and 15 V
- Time: 300 sec.

Pre-Screening by electrothermal effect - Thermal filed effect analysis

- The sharp edges cause high current density areas and high temperatures.
- The cathode tool A and D are chosen for the advanced simulation of inner cylindricity and concentricity because of the lower temperature electrolytic.

Applied voltage		8 V		15 V			
Electrolyte	forced convection flow		forced convection flow				
Cathode Tool	No pressure	100 Pa	10,000 Pa	No pressure	100 Pa	10,000 Pa	
А	110.76°C	83.19°C	68.01°C	189.19°C	159.72°C	139.57°C	
В	117.73℃	108.74°C	99.94°C	207.39°C	188.94°C	182.22℃	
С	121.94°C	121 81°C	107.09°C	208 27°C	207 98°C	187 81°C	
D	95.82°C	81.66°C	73.43℃	163.64°C	145.19°C	139.63°C	
Е	123.18°C	122.92℃	116.89°C	210.38℃	209.92°C	204.01°C	
F	110.71°C	108. 3 8℃	97.17°C	189.24°C	198.51°C	171.73℃	

The highest temperature on 6 cathode tools under different conditions

Current density and temperature distributions on cathode tool A

Simulation of Front section profile (cylindricity) by A and D cathode tool

- Tool A and D are chosen to anaylze on cylindricity and concentricity.
- Feed rate of tool: 0.1 mm/s.
- Process time 61 sec.
- Tool A can produce better cylindricity than tool D because it can provide an more uniform distribution of current density than D.

Electrical field distribution in the ECM system by cathode tools A and D of 15 V

Effects of feed rate

In order to reduce the protrusions, the simulation was carried out.

Simulation Conditions :

- Feeding rate:
 - Constant feed rate 0.1mm/s
 - 2 staged feed rate
 - -2/3 distance, 0.1mm/s
 - 1/3 distance, 0.066 mm/s

Simulation results:

- As the feed rate slowed down, the dissolution volume increased.
- The inner surface isn't smooth.
- Varying feed rate isn't a good method to improve the inner surface profile.

Process of stationary cylindrical cathode

Inner wall profile of bearing after ECM of 15 V with stationary cylindrical cathode.

- Use a cylindrical cathode with good cylindricity
- High current density areas won't transfer from blade to corner
- Provide uniform etching rate on the inner surface
- Process time 30 sec.
- Get a smoother inner surface

Comparison of three Cathode tools

- σ_{total} : the standard deviation of inner diameter of whole bearing
- σ_{main} : the standard deviation of inner diameter of main portion of bearing

The comparison of σ_{total} and σ_{main} by three different cathode tools

Cathode	Tool A (0.1 mm/s)	Tool D (0.1 mm/s)	Tool A (0.066 mm/s)	Cylincrical
σ_{total} (mm)	5.07×10^{-3}	5.03×10^{-3}	1.05×10^{-1}	5.12× 10 ⁻⁴
σ_{main} (mm)	1.34×10^{-3}	1.88×10^{-3}	5.73×10^{-3}	4.89×10 ⁻⁴

- The σ_{main} of tool D is worse than tool A.
- Reducing feed rate doesn't improve the final surface.
- The profile cylindrical cathode tool improves the standard deviation of cylindricity by 4 to 10 times comparing to tools A and D.
- The cylindrical cathode is a better choice to improve the inner cylindricity.

Simulation of Cross-sectional Profile (Concentricity)

The cross-section of workpiece

- Out of roundness 20 µm between the X and Y direction
- Rotating cathode tool
- Working Gap:0.2 mm and 0.05 mm

Different gaps between electrode and workpiece

Simulation of Cross-sectional Profile (Concentricity)

- Beginning of ECM
 - The electrode gap in the Y direction is smaller than the electrode gape in X direction
 - Higher current density distribution occurs in Y direction
 - Material current density isn't uniform
- After 120 seconds
 - The inter-electrode gap enlarges and becomes even
 - The current density distribution is more uniform

Current density distribution before and after ECM process with cylinder cathode tool.

Effects of process parameters on Concentricity

Concentricity and dissolved thickness change with different voltage and time

- Linearly proportional relationship between dissolved thickness and time in large gap
- In simulation of 0.2mm gap, it would takes more than 180 sec. to reach the value of concentricity spec 5 µm.
- In simulation of 0.05mm gap, it takes only 65 sec and 114 sec to realize concentricity spec. 5 µm by 8V and 15V respectively.
- Smaller gap has high dissolution rate, large gap would be better in controlling the dissolution thickness.

Conclusions

- From the simulation of electrothermal effect coupled with dynamical flow, we selected cathode tools A&D because they generated lower electrolytic temperatures.
- In the simulation of cylindricity:
 - In feeding tool system, we can't have a fine, smooth inner surface profile after μ ECM process because of the transformation of high current density area.
 - In non-feeding tool system, the cylindrical cathode tool may provide a finer inner surface profile and σ_{main} under 1 μ m.

• In the simulation of concentricity:

- In the simulation with 0.05 mm gap, the dissolved rate is high and easy to reach the concentricity spec. 5 µm in shorter time.
- In the simulation with 0.2 mm gap, it may take large to reach the concentricity. But the _ dissolved thickness is easy to forecast.

精微電解加工 電解去毛邊應用

毛邊的產生

- 工件在刀具切削力作
 用下受擠壓而產生剪
 切滑動的變形過程。
- 工件的邊、角、棱等
 部位產生較大的塑性
 變形。
- 當切屑與工件斷裂分 離的過程中會使其一
 部分滯留在工件的邊、
 角、棱等部位,形成
 了所謂的毛邊。

毛邊的危害

- 干擾工件的測量精度。
- 影響加工的定位。
- 對操作者的安全構成威脅。
- 影響品質,甚至無法正常組裝。

研究動機

- 處理精光沖製零件毛邊難題;
- 減低勞動部份;
- 降低製造成本;
- 將電化學去毛邊技術應用到實際
 工作上。

電解去毛邊原理

33全因子&水準數

完整實驗採取全因子規劃,因子數:3,全因子設計:3³ 試驗次數:27。

田 7	水準數					
四丁	1	2	3			
轉速	2 rpm	4 rpm	6 rpm			
時間	6分鐘	8分鐘	10分鐘			
電壓	8V	10V	12V			

實驗檢測標準,每個實驗組中有150件,依據 ANSI/ASQC Z1.4-2008計數值抽樣計算,

每批量應取20件為量測標準。

R角平均值主效應圖

61

最佳水準數:

轉速 2rpm、時間 6分鐘、電壓 8V

最佳化再現性:數據和標準差

	1	2	3	4	5	6	7	8	9	10	11
0	65.9	66.89	65.62	67.42	68.36	66.47	65.98	64.82	64.32	64.98	67.41
1	65.98	66.45	66.41	68.06	64.21	65.15	64.38	65.01	68.23	66.50	68.39
2	64.35	65.98	66.91	63.27	67.59	68.59	66.32	67.83	66.53	68.24	64.09
3	66.49	67.13	64.34	68.41	67.93	63.59	63.14	68.52	66.48	66.09	64.58
	12	13	14	15	16	17	18	19	20	R角均值	標準差
0	12 65.10	13 64.65	14 64.89	15 64.65	16 67.63	17 64.58	18 66.81	19 66.39	20 65.23	R角均值 65.905	標準差 1.204
0	12 65.10 66.41	13 64.65 64.24	14 64.89 66.32	15 64.65 66.06	16 67.63 64.83	17 64.58 65.74	18 66.81 65.94	19 66.39 66.13	20 65.23 64.89	R角均值 65.905 65.966	標準差 1.204 1.237
0 1 2	12 65.10 66.41 67.54	13 64.65 64.24 63.58	14 64.89 66.32 66.73	15 64.65 66.06 68.27	16 67.63 64.83 66.74	17 64.58 65.74 65.22	18 66.81 65.94 67.05	19 66.39 66.13 66.49	20 65.23 64.89 65.89	R角均值 65.905 65.966 66.360	標準差 1.204 1.237 1.563

電解前的毛邊

電解前後比較

電解前後比較

震盪成品比較

電解與震盪 比較

電解與震盪 R角差別

製程結果 粗糙度

結論

- 運用DOE實驗設計,驗證滾鍍方式去毛邊。
 - 經實驗結果,確認可行性。
 - 電解去毛邊,R角值是65±2 μm,取得穩定品質要求。
- 與震盪研磨方式在去毛邊的比較。
 - 圆角半徑: 0.02~0.20 mm vs. 65±2 μm。
 - 粗糙度:刀痕明顯存在 vs. 表面平滑細緻。
- 電解去毛邊-更有效率及經濟節約成本。
 - 時間:6分鐘 vs.4小時。
 - 設備:建構裝備成本低。
 - 操作技能:入門基礎低。

總結

● 電化學加工具有以下特色:

- 加工材料範圍廣,只要可以導電的材料都可以被加工,不受其硬度及強度
 大小的影響。
- 工件加工面的表面粗糙度良好,不會產生毛邊,也沒有殘留應力產生。
- 可一次加工完成複雜的形狀,生產率高,加工速度快。
- 應用於金屬拋光時,具有潔淨、改質、無拋光應力等優點。
- COMSOL多物理耦合模擬軟體,對於ECM加工是個有效的分析工具。

● 102年2月1日, 電化學小聯盟成立, 相關資訊 http://www.ceta.url.tw/。

台灣科技產業,於電化學加工技術應用層面較不廣泛,且技術與國 外尚有差距,對於未來產品"輕、薄、短、小"高值化的需求,日益嚴 苛,若能導入電化學加工關鍵技術與COMSOL軟體的應用,將為台灣製 造技術,帶來一個新利基。