UNIVERSITA' DEGLI STUDI DI ROMA

Key-Holes Magnetron Design and Multiphysics Simulation A. Leggieri¹, F. Di Paolo¹ and D. Passi¹

COMSOL CONFERENCE ROTTERDAM2013

¹Department of Electronic Engineering, University of Rome "Tor Vergata", Italy

Introduction: This paper describes the design and the characterization of an eight key holes resonant cavities X-Band Magnetron, operating in π mode, which undergoes the thermal-structural effects due to the cathode heating.

Results: Electromagnetic behavior and particle motion have been computed in Thermo mechanical operative conditions. By the superposition of resonant field and electron trajectories, operating working points have been individuated.

Figure 1. Magnetron geometry and materials.

Computational Methods: Thermal Stress (TS), Eigen-frequency (EF) and Particle Tracing (PT) analysis are coupled by Moving Mesh (MM) interface and by storing temperature information.

Electromagnetic behaviour and particles in EM field - Working conditions		
	Thermal Stress Moo	ule
	Displacement	Temperature

Figure 3. Cathode heating effects.

Figure 4. Resonant E-fields in working conditions.

	π mode	2π mode
Cold conditions	f_{π} = 9.061 GHz Q_{π} = 8300.	$f_{2\pi}$ = 3.673 GHz $Q_{2\pi}$ = 1000
Working	$f_{\pi} = 9.042 \text{ GHz}$	$f_{2\pi}$ = 3.663 GHz

Figure 5. Velocity in working conditions.

Cold	<i>v_{Max}</i> = 1.196·10 ⁸ m/s
conditions	<i>E_{Max}</i> = 7.94 MV/m
Working	$v_{\rm Max} = 1.227 \cdot 10^8 {\rm m/s}$

Figure 2. Computation Logical Diagram.

Critical field of the designed device can be described by (1) and (2) with $r_m = (r_a^2 r_k^2)/(2r_a)$, where r_k and r_a are respectively the cathode and anode radii, *B* is the Magnetic induction field applied along the axial direction, *d* the anode cathode distance and *f* the operative frequency. A charge release discretization is given by (3), where *I* is the cathode current

Figure 6. Resonant Efields and particle trajectories.

conditions $E_{Max} = 8.03 \text{ MV/m}$

Table 2. Maximumvelocity and Es fields.

Figure 7. Magnetron working points.

Conclusions: By applying the design condition: V=60KV, B=1330G in order to have I = 110A; this device, with a typical efficiency of 40%, can produce a pulsed

and Δt the time interval between releases.

$$B_{C} = \sqrt{\frac{2mV}{ed^{2}}}$$
 (1), $V_{C} = \frac{1}{2}\pi Br_{m}df$ (2), $N = \frac{I\Delta t}{e}$ (3)

In order to decrease computational cost, the number of particle per release *N* has been reduced and a charge multiplication factor *n* has been introduced.

microwave peak power of 2.64 MW.

References:

1. George B. Collins, Microwave Magnetrons, McGraw Hill, New York, 1948.

2. COMSOL Structural Mechanics Module User's Guide, Ver. 4.3 2012.

COMSOL Multiphysics User's Guide, Ver. 4.3, 2012.
COMSOL RF Module User's Guide Ver. 4.3, 2012.
COMSOL Particle Tracing Module User's Guide, Ver. 4.3.
COMSOL AC/DC Module User's Guide Ver. 4.3, 2012.

Excerpt from the Proceedings of the 2013 COMSOL Conference in Rotterdam